
تعداد نشریات | 25 |
تعداد شمارهها | 967 |
تعداد مقالات | 8,010 |
تعداد مشاهده مقاله | 13,573,738 |
تعداد دریافت فایل اصل مقاله | 9,616,359 |
مقاله پژوهشی: تأثیر عوامل محیطی روی شکاف انرژی و نوار رسانایی فسفرن سیاه: رهیافت آشوب کوانتومی | ||
فیزیک کاربردی ایران | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 اردیبهشت 1404 اصل مقاله (1.26 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2025.49085.1436 | ||
نویسندگان | ||
الهه جوان شور1؛ سهراب بهنیا* 2؛ فاطمه نعمتی3 | ||
1دانشجوی دکتری، گروه فیزیک، دانشکده علوم و فناوریهای نوین، دانشگاه صنعتی ارومیه، ارومیه، ایران | ||
2استاد، گروه فیزیک، دانشکده علوم و فناوریهای نوین، دانشگاه صنعتی ارومیه، ارومیه، ایران | ||
3دانشآموختۀ دکتری، گروه فیزیک، دانشکده علوم و فناوریهای نوین، دانشگاه صنعتی ارومیه، ارومیه، ایران | ||
چکیده | ||
پیشرفتهای کنونی در فناوری تشخیص مادون قرمز به دلیل کاربردهای اساسی آن در زمینههای مختلف، از جمله مخابرات، دید در شب و تصویربرداری با وضوح بالا، توجهات بسیاری را به خود جلب کرده است. این مطالعه پتانسیل فسفرن سیاه، یک ماده دو بعدی با ویژگیهای ساختاری و الکترونیکی منحصر به فرد را به عنوان یک نامزد امیدوارکننده برای آشکارسازهای مادون قرمز بررسی میکند. به این منظور، تاثیر دمای محیط، ناخالصی و ولتاژ الکترود را بر رسانایی الکتریکی فسفرن سیاه بررسی شده و بر شکاف نواری قابل تنظیم و تحرک بالای حامل آن تاکید میشود. با استفاده از نظریه آشوب کوانتومی و نظریه ماتریس تصادفی، دینامیک سامانهمورد بررسی قرار گرفته و شرایط بهینه برای عملکرد آشکارساز شناسایی میشود. یافتههای این پژوهش نشان میدهد که در دمای اتاق، با ولتاژ 2 ولت و غلظت ناخالصی بورون %1/1، فسفرن سیاه انتقال مطلوبی به سمت فاز ویگنر رخ میدهد که ویژگیهای رسانایی آن افزایش مییابد. افزون بر این، این مطالعه نشان میدهد که چگونه سطوح مختلف ناخالصی بر توزیع سطح انرژی تأثیر میگذارد و سامانه را از رفتار عایق به فلزی تغییر میدهد. نتایج بر اهمیت کنترل ناخالصی و دما در بهینهسازی فسفرن سیاه برای کاربردهای تشخیص مادون قرمز تأکید میکند. این کار به درک قابلیتهای فسفرن سیاه کمک کرده و زمینه را برای نوآوریهای آینده در فناوریهای آشکارساز مادون قرمز فراهم میکند. | ||
کلیدواژهها | ||
آشکارساز مادونقرمز؛ فسفرن سیاه؛ آشوب کوانتومی؛ نظریه ماتریس تصادفی | ||
عنوان مقاله [English] | ||
Research Paper: The Effect of Environmental Factors on the Energy Gap and Conduction Band of Black Phosphorene: A Quantum Chaos Approach | ||
نویسندگان [English] | ||
Elahe Javanshoor1؛ Sohrab Behnia2؛ Fatemeh Nemati3 | ||
1PhD Student, Department of Physics, Faculty of Modern Sciences and Technologies, Urmia University of Technology, Urmia, Iran | ||
2Professor, Department of Physics, Faculty of Modern Sciences and Technologies, Urmia University of Technology, Urmia, Iran | ||
3PhD Graduated, Department of Physics, Faculty of Modern Sciences and Technologies, Urmia University of Technology, Urmia, Iran | ||
چکیده [English] | ||
Recent advancements in infrared detection technology have garnered significant attention due to their essential applications across various fields, including telecommunications, night vision, and high-resolution imaging. This study explores the potential of black phosphorene, a two-dimensional material with unique structural and electronic properties, as a promising candidate for infrared detectors. The research investigates the impact of ambient temperature, impurity, and electrode voltage on the electrical conductivity of black phosphorene, emphasizing its tunable band gap and high carrier mobility. Utilizing quantum chaos theory and random matrix theory, we analyze the system's dynamics and identify optimal conditions for detector performance. Our findings indicate that at room temperature, with a voltage of 2 V and a boron impurity concentration of 1.1%, black phosphorene exhibits a favorable transition toward the Wigner phase, enhancing its conductive properties. Additionally, the study highlights how varying impurity levels influence energy level distributions, transitioning the system from insulating to metallic behavior. The results underscore the significance of controlling impurity and temperature in optimizing black phosphorene for infrared detection applications. This work contributes to understanding black phosphorene's capabilities and lays the groundwork for future innovations in infrared detector technologies. | ||
کلیدواژهها [English] | ||
Infrared Detector, Black Phosphorene, Quantum Chaos, Random Matrix Theory | ||
مراجع | ||
[1] Xu, K., Zhou, W. and Ning, Z., "Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors", Small 16(47), 2003397, 2020. https://doi.org/10.1002/smll.202003397 [2] Yang, M., Han, Q., Liu, X., Han, J., Zhao, Y., He, L., Gou, J., Wu, Z., Wang, X. and Wang, J., "Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband", Advanced Functional Materials 30(12), 1909659, 2020. https://doi.org/10.1002/adfm.201909659 [3] Tadeo, I.J., Mukhokosi, E.P., Krupanidhi, S.B. and Umarji, A.M., "Low-cost VO 2 (M1) thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture for IR photodetection", RSC advances 9(18), 9983-9992, 2019. https://doi.org/10.1039/C9RA00189A [4] Weng, B., Qiu, J., Zhao, L., Yuan, Z., Chang, C. and Shi, Z., "Recent development on the uncooled mid-infrared PbSe detectors with high detectivity", In Quantum Sensing and Nanophotonic Devices XI 8993, 178-185. SPIE, 2014. https://doi.org/10.1117/12.2041276 [5] Kopytko, M., Kębłowski, A., Gawron, W., Martyniuk, P., Madejczyk, P., Jóźwikowski, K., Kowalewski, A., Markowska, O. and Rogalski, A., "MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation", Optical Engineering 54(10), 105105-105105, 2015. https://doi.org/10.1117/1.OE.54.10.105105 [6] Matveev, B., Aidaraliev, M., Gavrilov, G., Zotova, N., Karandashov, S., Sotnikova, G., Stus, N., Talalakin, G., Il’inskaya, N. and Aleksandrov, S., "Room temperature InAs photodiode–InGaAs LED pairs for methane detection in the mid-IR", Sensors and Actuators B: Chemical 51(1-3), 233-237, 1998. https://doi.org/10.1016/S0925-4005(98)00200-7 [7] Fedeli, J.M. and Nicoletti, S., "Mid-infrared (Mid-IR) silicon-based photonics", Proceedings of the IEEE 106(12), 2302-2312, 2018. https://doi.org/10.1109/JPROC.2018.2844565 [8] Wu, J., Chen, H.Y., Yang, N., Cao, J., Yan, X., Liu, F., Sun, Q., Ling, X., Guo, J. and Wang, H., "High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation", Nature Electronics 3(8), 466-472, 2020. https://doi.org/10.1038/s41928-020-0441-9 [9] Guo, Q., Pospischil, A., Bhuiyan, M., Jiang, H., Tian, H., Farmer, D., Deng, B., Li, C., Han, S.J., Wang, H. and Xia, Q., "Black phosphorus mid-infrared photodetectors with high gain", Nano letters 16(7), 4648-4655, 2016. https://doi/abs/10.1021/acs.nanolett.6b01977 [10] Yuan, S., Shen, C., Deng, B., Chen, X., Guo, Q., Ma, Y., Abbas, A., Liu, B., Haiges, R., Ott, C. and Nilges, T., "Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures", Nano letters 18(5), 3172-3179, 2018. https://doi/abs/10.1021/acs.nanolett.8b00835 [11] Shen, C., Liu, Y., Wu, J., Xu, C., Cui, D., Li, Z., Liu, Q., Li, Y., Wang, Y., Cao, X. and Kumazoe, H., "Tellurene photodetector with high gain and wide bandwidth", ACS nano 14(1), 303-310, 2019. https://doi/abs/10.1021/acsnano.9b04507 [12] Spirito, D., Coquillat, D., De Bonis, S.L., Lombardo, A., Bruna, M., Ferrari, A.C., Pellegrini, V., Tredicucci, A., Knap, W. and Vitiello, M.S., "High performance bilayer-graphene terahertz detectors", Applied Physics Letters 104(6), 2014. https://doi.org/10.1063/1.4864082 [13] Li, X.L., Han, W.P., Wu, J.B., Qiao, X.F., Zhang, J. and Tan, P.H., "Layer‐number dependent optical properties of 2D materials and their application for thickness determination", Advanced Functional Materials 27(19), 1604468, 2017. https://doi.org/10.1002/adfm.201604468 [14] Guo, Q., Yu, R., Li, C., Yuan, S., Deng, B., García de Abajo, F.J. and Xia, F., "Efficient electrical detection of mid-infrared graphene plasmons at room temperature", Nature materials 17(11), 986-992, 2018. https://doi.org/10.1038/s41563-018-0157-7 [15] Yarmohammadi, M., Hoi, B.D. and Phuong, L.T.T., "Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene", Scientific Reports 11(1), 3716, 2021. https://doi.org/10.1038/s41598-021-83213-0 [16] Solomenko, A.G., Sahalianov, I.Y., Radchenko, T.M. and Tatarenko, V.A., "Straintronics in phosphorene via tensile vs shear strains and their combinations for manipulating the band gap", Scientific Reports 13(1), 13444, 2023. https://doi.org/10.1038/s41598-023-40541-7 [17] Li, P., Liu, S., Zhou, H., Xu, J., Huang, K., Zhang, L., Yu, J. and Wang, L., "Impurity properties in phosphorene: First-principles calculations and comparisons", Materials Science in Semiconductor Processing 151, 107006, 2022. https://doi.org/10.1016/j.mssp.2022.107006 [18] Arani, L.A., Hosseini, A., Asadi, F., Masoud, S.A. and Nazemi, E., "Intelligent computer systems for multiple sclerosis diagnosis: a systematic review of reasoning techniques and methods", Acta Informatica Medica 26(4), 258, 2018. https://doi.org/10.5455/aim.2018.26.258-264 [19] Chen, X., Wang, L., Wu, Y., Gao, H., Wu, Y., Qin, G., Wu, Z., Han, Y., Xu, S., Han, T. and Ye, W., "Probing the electronic states and impurity effects in black phosphorus vertical heterostructures", 2D Materials 3(1), 015012, 2016. https://doi.org/10.1088/2053-1583/3/1/015012 [20] Mortezaei Nobahari, M., "Electro-optical properties of strained monolayer boron phosphide", Scientific Reports 13(1), 9849, 2023. https://doi.org/10.1038/s41598-023-37099-9 [21] Paprotzki, E., Osterkorn, A., Mishra, V. and Kehrein, S., "Quench dynamics in higher-dimensional Holstein models: Insights from truncated Wigner approaches", Physical Review B 109(17), 174303, 2024. https://doi.org/10.1103/PhysRevB.109.174303 [22] Jung, J. and MacDonald, A.H., "Magnetoelectric coupling in zigzag graphene nanoribbons", Physical Review B—Condensed Matter and Materials Physics 81(19), 195408, 2010. https://doi.org/10.1103/PhysRevB.81.195408 [23] Rudenko, A.N., Yuan, S. and Katsnelson, M.I., "Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations", Physical Review B 92(8), 085419, 2015. https://doi.org/10.1103/PhysRevB.92.085419 [24] Illas, F., de PR Moreira, I., Bofill, J.M. and Filatov, M., "Extent and limitations of density-functional theory in describing magnetic systems", Physical Review B—Condensed Matter and Materials Physics 70(13), 132414, 2004. https://doi.org/10.1103/PhysRevB.70.132414 [25] Qin, M., "Combination of tensor network states and Green's function Monte Carlo", Physical Review B 102(12), 125143, 2020. https://doi.org/10.1103/PhysRevB.102.125143 [26] Chng, C.P., Dowd, A., Mechler, A. and Hsia, K.J., "Molecular dynamics simulations reliably identify vibrational modes in far-IR spectra of phospholipids", Physical Chemistry Chemical Physics 26(27), 18715-18726, 2024. https://doi.org/10.1039/D4CP00521J [27] Wigner, E.P., "Characteristic vectors of bordered matrices with infinite dimensions i", The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, 524-540, 1993. https://doi.org/10.1007/978-3-662-02781-3_35 [28] Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A. and Wong, S.S., "Random-matrix physics: spectrum and strength fluctuations", Reviews of Modern Physics 53(3), 385, 1981. https://doi.org/10.1103/RevModPhys.53.385 [29] Mehta, M.L., "Random matrices. Third. Vol. 142", Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 9, 2004. [30] Beenakker, C.W., "Random-matrix theory of quantum transport", Reviews of modern physics 69(3), 731, 1997. https://doi.org/10.1103/RevModPhys.69.731 [31] Haldar, S.K., Chakrabarti, B., Chavda, N.D., Das, T.K., Canuto, S. and Kota, V.K.B., "Level-spacing statistics and spectral correlations in diffuse van der Waals clusters", Physical Review A 89(4), 043607, 2014. https://doi.org/10.1103/PhysRevA.89.043607 [32] Schierenberg, S., Bruckmann, F. and Wettig, T., "Wigner surmise for mixed symmetry classes in random matrix theory", Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 85(6), 061130, 2012. https://doi.org/10.1103/PhysRevE.85.061130 [33] Magner, A.G., Levon, A.I. and Radionov, S.V., "Simple approach to the chaos-order contributions and symmetry breaking in nuclear spectra", The European Physical Journal A 54(12), 214, 2018. https://doi.org/10.1140/epja/i2018-12645-8 [34] Brody, T.A., "A statistical measure for the repulsion of energy levels", Lettere al Nuovo Cimento (1971-1985) 7(12), 482-484, 1973. https://doi.org/10.1007/BF02727859 [35] Batistić, B., Lozej, Č. and Robnik, M., "Statistical properties of the localization measure of chaotic eigenstates and the spectral statistics in a mixed-type billiard", Physical Review E 100(6), 062208, 2019. https://doi.org/10.1103/PhysRevE.100.062208 [36] Watts, L., Haidar, E.A. and Stampfl, C., "Electron Transport Study of Hydrogen Peroxide Sensing with 2D Phosphorene and Molybdenum Disulfide", The Journal of Physical Chemistry C 126(36), 15397-15404, 2022. https://doi/abs/10.1021/acs.jpcc.2c02520 [37] Ma, R., Geng, H., Deng, W.Y., Chen, M.N., Sheng, L. and Xing, D.Y., "Effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons", Physical Review B 94(12), 125410, 2016. https://doi.org/10.1103/PhysRevB.94.125410 [38] Boukhvalov, D.W., "The atomic and electronic structure of nitrogen-and boron-doped phosphorene." Physical Chemistry Chemical Physics 17(40), 27210-27216, 2015. https://doi.org/10.1039/C5CP05071E [39] Zhang, S. and Sun, H., "Effects of temperature on strain engineering and transition-metal adatom magnetization in phosphorene: ab initio molecular dynamics studies", Physical Review B 103(15), 155432, 2021. https://doi.org/10.1103/PhysRevB.103.155432 [40] Huang, S., Wang, F., Zhang, G., Song, C., Lei, Y., Xing, Q., Wang, C., Zhang, Y., Zhang, J., Xie, Y. and Mu, L., "From anomalous to normal: temperature dependence of the band gap in two-dimensional black phosphorus", Physical Review Letters 125(15), 156802, 2020. https://doi.org/10.1103/PhysRevLett.125.156802 [41] Villegas, C.E., Rocha, A.R. and Marini, A., "Anomalous temperature dependence of the band gap in black phosphorus", Nano letters 16(8), 5095-5101, 2016. https://doi.org/10.1021/acs.nanolett.6b02035 [42] Erande, M.B., Pawar, M.S. and Late, D.J., "Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets", ACS applied materials & interfaces 8(18), 11548-11556, 2016. https://doi/abs/10.1021/acsami.5b10247 [43] Dai, X., Zhang, L., Jiang, Y. and Li, H., "Electronic transport properties of phosphorene/graphene (silicene/germanene) bilayer heterostructures: A first-principles exploration", Ceramics International 45(9), 11584-11590, 2019. https://doi.org/10.1016/j.ceramint.2019.03.029 [44] Youngblood, N. and Li, M., "Ultrafast photocurrent measurements of a black phosphorus photodetector", Applied Physics Letters 110(5), 2017. https://doi.org/10.1063/1.4975360 [45] Paschotta, R., Encyclopedia of laser physics and technology. Vol. 1. Berlin: Wiley-vch, 2008. https://doi.org/10.1002/9783527640331.fmatter [46] Zeng, L., Zhang, X., Liu, Y., Yang, X., Wang, J., Liu, Q., Luo, Q., Jing, C., Yu, X.F., Qu, G. and Chu, P.K., "Surface and interface control of black phosphorus", Chem 8(3), 632-662, 2022. https://doi.org/10.1016/j.chempr.2021.11.022 [47] Huang, J., Dong, N., Zhang, S., Sun, Z., Zhang, W. and Wang, J., "Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets", ACS Photonics 4(12), 3063-3070, 2017. https://doi.org/10.1021/acsphotonics.7b00598
| ||
آمار تعداد مشاهده مقاله: 23 تعداد دریافت فایل اصل مقاله: 75 |