تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,624,737 |
تعداد دریافت فایل اصل مقاله | 8,986,795 |
جداسازی و شناسایی مولکولی باکتریهای محرک رشد گیاه از فیلوسفر و ریزوسفر گندم زراعی (Triticum aestivum L. ) | ||
زیست شناسی کاربردی | ||
مقاله 4، دوره 37، شماره 3 - شماره پیاپی 81، آذر 1403، صفحه 36-46 اصل مقاله (931.01 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.44085.1574 | ||
نویسندگان | ||
فرحناز جوانمردی* 1؛ سید محمد مهدی محمودی2؛ حسن رستمی3 | ||
1استادیار، گروه زیست شناسی، دانشکده علوم پایه، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران | ||
2استادیار ،گروه میکروبیولوژی ، دانشکده علوم پایه، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران | ||
3دانش آموخته کارشناسی ارشد، گروه میکروبیولوژی، دانشکده علوم پایه، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران | ||
چکیده | ||
مقدمه: تعداد قابل توجهی از باکتریهای خاک دارای قابلیت تثبیت نیتروژن، محلولسازی فسفات و تولید اکسین هستند. چنین باکتریهایی میتوانند نقش موثری در بهبود رشد گیاهان داشته باشند. هدف از این پژوهش، جداسازی، شناسایی و بررسی عملکرد چنین باکتری هایی بر میزان رشد گیاه عدس بود. مواد و روشها: . تعداد 30 نمونه باکتری، از فیلوسفر و ریزوسفر گندم جداسازی شدند. از محیط کشت فاقد نیتروژن جهت شناسایی باکتریهای تثبیت کننده نیتروژن، و از محیط کشتNBRIP جهت بررسی توانایی محلولسازی فسفات نامحلول استفاده شد. توانایی جدایهها در تولید اکسین با روش سالکوفسکی بررسی شد. همچنین تاثیر دو جدایه برتر، بر میزان رشد طولی ساقه و ریشه گیاه عدس بررسی شد. نتایج: از 14 جدایه فیلوسفری و 16 جدایه ریزوسفری، 2 جدایه الف و ب که به ترتیب از ریزوسفر و فیلوسفر گندم جداسازی شده بودند و بیشترین توانایی را در خصوص پارامترهای مورد نظر داشتند، براساس تعیین توالی بخشی از ژن 16S rDNA شناسایی شدند. جدایه الف با قابلیت تثبیت نیتروژن و محلولسازی فسفات به میزان 98 درصد مشابه باسیلوس سرئوس و جدایه ب با قابلیت تولید اکسین به میزان 99 درصد مشابه آرتروباکتر گلوبیفورمیس بود. جدایه A به میزان 8 درصد و جدایه B به میزان 50 درصد توانستند رشد طولی ساقه عدس را افزایش دهند. بحث و نتیجهگیری: ریزوسفر گندم دارای باکتریهایی با قابلیت تثبیت نیتروژن، محلولسازی فسفات و تولید اکسین است. بهکارگیری چنین سویههایی، میتواند نقش موثری در بهبود رشد گیاهان و کاهش مصرف کودهای شیمیایی داشته باشد. | ||
کلیدواژهها | ||
ایندول استیک اسید؛ تثبیت نیتروژن؛ محلولسازی فسفات | ||
عنوان مقاله [English] | ||
Isolation and Molecular Identification of Plant Growth-Promoting Bacteria from Phyllosphere and Rhizosphere of Triticum aestivum L. | ||
نویسندگان [English] | ||
Farahnaz Javanmardi1؛ Seyed Mohammad Mehdi Mahmoodi2؛ Hasan Rostami3 | ||
1Assistant Professor, Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran | ||
2Assistant Professor, Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran | ||
3MSC.Department of Microbiology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran | ||
چکیده [English] | ||
Introduction: A significant number of soil bacteria are capable of nitrogen fixation, phosphate solubilization and auxin production. Such bacteria can play an effective role in improving plant growth. The purpose of this research was to isolate, identify and investigate the performance of such bacteria on the growth rate of lentil. Materials and methods: Thirty bacterial samples were isolated from phyllosphere and rhizosphere of wheat. Nitrogen-free culture medium was used to identify nitrogen-fixing bacteria, and NBRIP culture medium was used to evaluate the ability of solubilization of phosphate. The ability of the isolates to produce auxin was investigated by the Salkowski method. Also, the effect of two superior isolates on the longitudinal growth of stem and root of lentil were investigated. Results: Out of 14 phyllospheric and 16 rhizospheric isolates, 2 isolates A and B, which were isolated from the rhizosphere and phyllosphere of wheat, respectively, and had the highest ability for the desired parameters, were identified based on sequencing a portion of 16S rDNA gene. Isolate A with nitrogen fixation and phosphate solubilization ability was 98% similar to Bacillus cereus and isolate B with auxin production ability was 99% similar to Arthrobacter globiformis. isolate A by 8% and isolate B by 50% were able to increase the longitudinal growth of lentil stem. Discussion and Conclusion: The wheat rhizosphere have bacteria capable of nitrogen fixation, phosphate solubilization, and auxin production. Applying such strains can play an effective role in improving plant growth and reducing the use of chemical fertilizers. | ||
کلیدواژهها [English] | ||
: Indole acetic acid, Nitrogen fixation, Phosphate solubilization | ||
مراجع | ||
Ahmad F. Ahmad I. and Sahir Khan M. (2005). Indole acetic acid production by indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology 29: 29-34. Alikhani H. A. Saleh-Rastin N. and Antoun H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287: 35-41. Alori E. T. Glick B. R. and Babalola O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology 8: 971-978. Ashrafuzzaman M. Hossen F. A. Ismail M. R. Hoque M. A. and Islam M. Z. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8: 1247-1252. Atlas R. M. and Bartha R. (1998). Microbial ecology: Fundamentals and Applications (4th edn). BCPC, USA. pp: 99-132. Chung H. Park M. Madhaiyan M. Seshadri S. Song J. and Chob H. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry 37: 1970-1974. Cox C. E. Brandl M. T. de Moraes M. H. Gunasekeraet S. and Teplitski M. (2018). Production of the plant hormone auxin by Salmonella and its role in the interactions with plants and animals. Frontiers in Microbiology 8: 2668-2672. Din I. Khan H. Ahmad Khan N. and Khil A. (2021) Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. Journal of the Saudi Society of Agricultural Sciences 20: 459–466. Elias F. Woyessa D. and Muleta D. (2016). Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma zone, Southwest Ethiopia. International Journal of Microbiology 7: 211-222. Eramma. Sahana and Rajashree (2021). Phosphate solublizing Bacteria as a Biofertilizer. Biological Forum 13(4): 76-79. Hernida L. Agustian J. (2019). Slow release urea fertilizer synthesized through recristallization of urea incorporating natural bentonite using various binders. Envinmental technology & innovation 13: 113-121. Hongoh Y. Yuzawa H, Ohkuma M. Kudo T. (2003). Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment, FEMS Microbiology Letters 221( 2): 299–304. Keswani C. Satyendra S. Singh P. Cueto L. García-Estrada C. Mezaache-Aichour S. et al. (2020). Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology 104: 8549–8565. Khan M. S. Zaidi A. and Wani P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture- a review. Agronomy for Sustainable Development 27(1) 29–43. Khan N. Bano A. M. D. and Babar A. (20202). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. Public Library of Science 15: e0231426. Knief C. Delmotte N. Chaffron S. Stark M. Innerebner G. Wassmann R. et al. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. International Society for Microbial Ecology 6: 1378–1390. Kumar A. Kumar A. and Patel H. (2018). Role of microbes in phosphorous availability and acquisition by plants. International Journal of Current Microbiology and Applied Science 7(5): 1344-1347. Madigan M. T. Martinko J. M. and Bender K. S. (2015. Brock biology of microorganisms. (14th edn). PE. USA. pp: 912-920. Mohite B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13:638–649. Mwajita M. R. Murage H. Tani A. Kahangi E. M. (2013). Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Springerplus 2: 606-613. Nadarajan S. Sukumaran S. (2021). Chemistry and toxicology behind chemical fertilizers. Academic press 12: 195-229. Nautiyal C. S. Bhadauria S. and Kumar P. (2000). Stress Induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182: 291-296. Olanrewaju O. S. Glick B. R. and Babalola O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33(11): 197. Orr C. H. James A. Leifert C. Cooper J. M. and Cumming S. P. (2011). Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Applied and Environmental Microbiology 77: 211-220. Park S. Kim A. L. and Hong Y. K. (2021). A highly efficient auxin-producing bacterial strain and its effect on plant growth. Journal of Genetic Engineering and Biotechnology 19: 128-134. Ren N. Wang Y. Ye Y. Zhao Y. Huang Y. Fu W. and Chu X. (2020) Effects of Continuous Nitrogen Fertilizer Application on the Diversity and Composition of Rhizosphere Soil Bacteria. Front Microbiol 11: 1948. Richardson A. E. and Simpson R. J. (2021). Soil microorganisms mediating phosphorus availability. Plant Physiology 156: 989-996. Rodriguez H. and Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology 17: 319-339. Saharan B. S. and Nehra V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research 21: 1-30. Sarwar M. and Kremer R. J. (1995). Enhanced suppression of plant growth through production of L- tryptophan derived compounds by deleterious rhizobacteria. Plant and Soil 172: 261-269. Selvi K. B. J. Paul J. A. Vijaya V. and Saraswathi K. (2017). Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochemistry and Molecular Biology Journal 3: 1. Sundra B. Natarajam V. and Hari K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research 77: 43-49. Vessey J. K. (2003). Plant growth promoting rhizobacteria as biofertilizer. Plant and Soil 225: 571-586. Vyas P. and Gulati A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology 22: 9 -174. Zafar Y. Ashraf M. and Malik K. A. (1986). Nitrogen fixation associated with the roots of kallar grass (Leptochloa fusca (L.) Kunth). Plant and Soil 90: 93–106. | ||
آمار تعداد مشاهده مقاله: 86 تعداد دریافت فایل اصل مقاله: 40 |