تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,624,714 |
تعداد دریافت فایل اصل مقاله | 8,986,790 |
نانوامولسیون کردن اسانس آویشن توسط مخلوط امولسیونه کنندهها و ارزیابی فعالیت ضد باکتریای DH5α E.coli | ||
زیست شناسی کاربردی | ||
مقاله 6، دوره 37، شماره 2 - شماره پیاپی 80، شهریور 1403، صفحه 61-72 اصل مقاله (995.43 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.45307.1594 | ||
نویسندگان | ||
فاطمه شاکری1؛ فاطمه مرادیان* 2؛ پویان مهربان جوبنی3؛ مهران رستمی4 | ||
1کارشناسی ارشد، گروه علوم پایه، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ساری | ||
2دانشیار، گروه علوم پایه، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ساری | ||
3استادیار، گروه علوم پایه، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ساری | ||
4دانشیار، گروه پژوهشی نانوفناوری رنگ و پوشش، پژوهشگاه صنایع رنگ، تهران، ایران | ||
چکیده | ||
هدف: مطالعه حاضر با هدف نانوامولسیونکردن اسانس گیاه آویشن(Thymus vulgaris) جهت افزایش پایداری و بررسی اثرات ضد باکتریایی آن در باکتریDH5α E. coli صورت گرفت. روشها: ابتدا میکروامولسیون اولیه در فاز روغنی تهیه و سپس با التراسوند به نانو امولیسیون تبدیل شد. میزان بار سطحی، ویسکوزیته، اندازه ذرات و مورفولوژی نانوامولسیون اسانس توسط دستگاه پتانسیل زتا، DLS و میکروسکوپ الکترونی TEM مورد بررسی قرار گرفت. نتایج: نتایج نشان داد که پتانسیل زتای نانوامولسیون حاوی 10 و 30 درصد اسانس، به ترتیب برابر با 5/11- و mV 1/11- بود. مورفولوژی نانوذرات هر دو نمونه به صورت کروی یکدست و میانگین اندازه نانوذرات نانوامولسیون دارای 10 و 30 درصد اسانس، به ترتیب 43 و30 نانومتر بود. نتایج اثرات ضدباکتریایی نانوامولسیونها نشان داد که نانوامولسیون حاوی 10 درصد اسانس(v/v)، با حجم 30 میکرولیتر و نانوامولسیون حاوی 30 درصد اسانس(v/v)، با حجم 20 میکرولیتر، تقریبا 50 درصد اثر مهارکنندگی (IC50) بر رشد باکتری E. coli DH5α داشتند. همچنین اسانس اولیه بر روی رشد باکتری در 20 میکرولیتر تقریبا 50 درصد مهار (IC50) را نشان داد. نتیجه گیری: باتوجه به پایداری نانوامولسیونهای اسانس گیاه آویشن تولیدشده، میتوان نتیجه گرفت که اثرات ضد باکتریایی این ترکیب در مقایسه با اسانس اولیه افزایش یافته است | ||
کلیدواژهها | ||
" ضد میکروب "؛ " گیاه آویشن"؛ " نانوتکنولوژی"؛ "IC50" | ||
عنوان مقاله [English] | ||
Nanoemulsification of Thyme essence by a mixture of emulsifiers and evaluation of the antibacterial activity of E.coli DH5α | ||
نویسندگان [English] | ||
Fatemeh Shakeri1؛ Fatemeh Moradian2؛ Pouyan Mehraban jobini3؛ Mehran Rostami4 | ||
1Master's degree, Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Sari | ||
2Associated professor, Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran. | ||
3Assistant professor, Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran. | ||
4Associated professor, Department of Nano Materials and Nano Coatings, Institute for Color Science and Technology, Tehran, Iran. | ||
چکیده [English] | ||
Subject: The present study was conducted with the aim of nanoemulsifying Thymus vulgaris essential oil to increase its stability and investigate its antibacterial effects on E. coli DH5α bacteria. Methods: First, the initial microemulsion was prepared in the oil phase and then it was transformed into a nanoemulsion by ultrasound. The amount of surface charge, viscosity, particle size and morphology of essential oil nanoemulsion was investigated by zeta potential device, DLS and TEM electron microscope. Results: The results showed that the zeta potential of nanoemulsion containing 10 and 30% essential oil was -11.5 and -11.1 mV, respectively. The morphology of the nanoparticles of both samples was spherical and the average size of the nanoemulsion nanoparticles with 10% and 30% essential oil was 43 and 30 nm, respectively. The results of the antibacterial effects of nanoemulsions showed that the nanoemulsion containing 10% essential oil (v/v), with a volume of 30 µl, and the nanoemulsion containing 30% essential oil (v/v), with a volume of 20 µl, had approximately 50% inhibitory effect (IC50) on the growth of E. coli DH5α. Also, the primary essential oil showed approximately 50% inhibition (IC50) on bacterial growth in 20 µl. Conclusion: According to the stability of the produced thyme essential oil nanoemulsions, it can be concluded that the antibacterial effects of this compound have increased compared to the original essence. | ||
کلیدواژهها [English] | ||
"Antimicrobe", " IC50", "Nanotechnology", "Thymus vulgaris plant" | ||
مراجع | ||
Acosta E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid and Interface Science. 14(1): 3-15. Antih J., Houdkova M., Urbanova K. and Kokoska L. (2021). Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules. 26(21):6553. Costa T.A. Morsy C.M. Matos M. Amorim M.E. Pintado A.P. Gomes J.A. and Teixeira V.M. (2009). Nanoencapsulation of bovine lactoferrin for oral hygiene applications, in: XVIIth International Conference on Bioencapsulation, September 24-26, Groningen, Netherlands. Das A. K., Nanda P. K., Bandyopadhyay S., Banerjee R., Biswas S. and McClements D. J. (2020). Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety. 19(5): 2677-2700. Di Pasqua R., Betts G., Hoskins N., Edwards M., Ercolini D. and Mauriello G. (2007). Membrane toxicity of antimicrobial compounds from essential oils. Journal of Agricultural and Food Chemistry. 55(12): 4863-4870. Donsi F. (2018). Applications of nanoemulsions in foods Nanoemulsions: Formulation, Applications, and Characterization, eds S. M. Jafari and D. J. McClements . MA: Academic Press, 349–377Pp. Cambridge. Enayatifard R., Akbari J., Babaei A., Rostamkalaei S.S., Hashemi S. M.H. and Habibi E. (2021). Anti-Microbial Potential of Nano-Emulsion form of Essential Oil Obtained from Aerial Parts of Origanum Vulgare L. as Food Additive. Advanced Pharmaceutical Bulletin. 11(2): 327. Ferreira J. P., Alves D., Neves O., Silva J., Gibbs P. A. and Teixeira P. C. (2010). Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control. 21(3): 227-230. Fisher K. and Phillips C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer. Trends in Food Science and Technology. 19(3):156-164. Gosh V., Mukherjee A. and Chandrasekaran N. (2013). Ultrasonic emulsifivation of food-grade nanoemulsion formulation and evulation of its bactericial activity. Ultrasonic Sono-chemistry. 20:338-344. Javed H., Erum Sh., Tabassum S. and Ameen F. ( 2013). An overview on medicinal importance of Thymus vulgaris. Journal of Asian Scientific Research. 3(10):974-982. Jasmina H., Džana O., Alisa E., Edina V. and Ognjenka R. (2017). Preparation of nanoemulsions by high-energy and lowenergy emulsification methods. CMBEBIH, Springer, 317-322Pp. Singapore. Junyaprasert V. B. and Morakul B. (2015). Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences. 10(1): 13-23.Lin P. C., Lee J. J. and Chang I. J. (2016). Essential oils from Taiwan: Chemical composition and antibacterial activity against Escherichia coli. Journal of Food and Drug Analysis. 24(3): 464-470. Lingan K. (2018). A review on major constituents of various essential oils and its application. Translational Medicine. 8(1000201):2161-1025. Mahfoudhi N., Ksouri R. and Hamdi S. (2016). Nanoemulsions as potential delivery systems for bioactive compounds in food systems: Preparation, characterization, and applications in food industry. Emulsions, Academic Press, 365-403Pp. Cambridge. McClements D.J. and Rao J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition. 51(4): 285-330. Pangi Z. and Beletsi A. (2003). Evangelatos K. PEG-ylated nanoparticles for biological and pharmaceutical application. Advance Drug Delivery Reviews. 24:403–19. Rodríguez-Rojo S., Varona S., Núñez M. and Cocero M. J. (2012). Characterization of rosemary essential oil for biodegradable emulsions. Industrial Crops and Products. 37(1):137-140. Saberi A.H., Fang Y. and McClements D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science. 39:1 95-102. Salvia-Trujillo L., Rojas-Graü M.A., Soliva-Fortun, R. and Martín-Belloso O. (2014). Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase. Experimental Design. Food and Bioprocess Technology. :3022–3032 Singh G., Kapoor I., Singh P., de Heluani C.S., de Lampasona M.P. and Catalan C.A . (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chemical Toxicology. 46(10):3295-302. Singletary K., (2016). Thyme;History, Applications, and Overview of Potential Health Benefits. Nutrition Today. 51(1):40-50. Sundararajan B., Moola A.K., Vivek K. and Kumari B.R. (2018). Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microbial Pathogenesis. 125:475-85. Talegaonkar S. and Negi L.M. (2015). Nanoemulsion in drug targeting. Targeted drug delivery: concepts and design, Springer, 433-459Pp. Cham, Switzerland. Wooster T. J., Golding M. and Sanguansri P. (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 24(22):12758-12765. Zhang Y., Shang Z., Gao C., Du M., Xu S., Song H. and Liu T. (2014). Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS Pharmaceutical Science and Technology. 15(4):1000-1008. | ||
آمار تعداد مشاهده مقاله: 35 تعداد دریافت فایل اصل مقاله: 43 |