تعداد نشریات | 25 |
تعداد شمارهها | 934 |
تعداد مقالات | 7,667 |
تعداد مشاهده مقاله | 12,519,820 |
تعداد دریافت فایل اصل مقاله | 8,899,134 |
بررسی نقش کیتوزان بر برخی ویژگیهای فیزیولوژیکی، بیوشیمیایی و فعالیت آنزیم فنیل آلانین آمونیالیاز (PAL) گیاه ریحان (Ocimun basilicum L.) در شرایط تنش شوری | ||
زیست شناسی کاربردی | ||
مقاله 5، دوره 37، شماره 1 - شماره پیاپی 79، خرداد 1403، صفحه 56-74 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.44033.1570 | ||
نویسندگان | ||
نسترن رشیدی1؛ رمضانعلی خاوری نژاد* 2؛ پروین رامک3؛ سارا سعادتمند4 | ||
1دانش آموخته مقطع دکترا، گروه زیستشناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران | ||
2استاد، گروه زیستشناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران | ||
3استادیار ، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات آموزش و ترویج کشاورزی، | ||
4دانشیار، گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران | ||
چکیده | ||
مقدمه: کیتوزان پلیساکاریدی است که پاسخهای دفاعی گیاهان را القا کرده و بر افزایش سرعت رشد و تولید متابولیت-های ثانویه آنها موثر است. ریحان (Ocimum basilicum L.) گیاهی دارویی است و از لحاظ مورفولوژیکی و ترکیبات ثانویه دارای تنوع زیادی است. با توجه به روند رو به رشد شوری و خطرات ناشی از آن و اهمیت گیاه ریحان در صنایع دارویی و غذایی، این پژوهش به منظور ارزیابی اثر کیتوزان بر برخی ویژگیهای فیزیولوژیکی، بیوشیمیایی و فعالیت آنزیم فنیل آلانین آمونیالیاز (PAL) در گیاه ریحان تحت تنش شوری انجام شد. روشها: پس از تیمار کیتوزان با غلظت 200 میلیگرم در لیتر، گیاهان تحت تنش شوری در چهار سطح صفر، 25، 50، 100 و 150 میلیمولار قرار گرفتند. سپس فعالیت آنزیم فنیل آلانین آمونیالیاز، پاسخهای فیزیولوژیک و بیوشیمیایی گیاه ریحان تحت تاثیر کیتوزان در برهمکنش با سطوح مختلف تنش شوری مورد بررسی قرار گرفت. نتایج و بحث: تنش شوری اثرات منفی بر کلروفیل کل و محتوای کاروتنوئید داشت ولی باعث افزایش محتوای فلاونوئید شد. بعلاوه کیتوزان در سطوح بالای شوری موجب افزایش کلروفیل کل و در تمام سطوح شوری سبب افزایش کاروتنوئید شد. آنزیم کاتالاز و پراکسیداز و میزان پتاسیم نیز در تیمارهای کیتوزان افزایش یافت که نشان دهنده افزایش پاسخهای دفاعی گیاه به شوری است. کیتوزان همچنین منجر به افزایش فعالیت آنزیم PAL شد، از آنجایی که این آنزیم در مسیر بیوسنتز فنیلپروپانوئیدها کلیدی است میزان متیلکاویکول اسانس را افزایش داد. به طور کلی کاربرد کیتوزان بر ترکیبات ثانویه گیاه ریحان در جهت افزایش تحمل استرس شوری اثرگذار بود. | ||
کلیدواژهها | ||
خانواده نعناعیان؛ فنیلپروپانوئید؛ کلرید سدیم؛ مالوندیآلدئید | ||
عنوان مقاله [English] | ||
The role of chitosan on some physiological and biochemical properties and PAL enzyme in basil plant (Ocimun basilicum L.) under salinity stress | ||
نویسندگان [English] | ||
Nastaran Rashidi1؛ Ramazan Ali Khavarinejad2؛ Parvin Ramak3؛ Sara Saadatmand4 | ||
1Graduated Ph.D., department of Biology, Islamic Azad University, science and research branch, Tehran | ||
2Professor, department of Biology, Islamic Azad University, science and research branch, Tehran | ||
3assistant professor.Associate Professor, department of natural resources research, agriculture and natural resources research center of Lorestan, Agricultural Research, Education and Extension Organization, Khorram-Abad | ||
4Associate Professor, department of Biology, Islamic Azad University, science and research branch, Tehran | ||
چکیده [English] | ||
Introduction: Chitosan is a polysaccharide that elicits numerous defense responses in plants and affects the growth rate and increasing the production of secondary metabolites. Basil (Ocimum basilicum L.), a medical herb, has many varieties in terms of morphology and secondary compounds. Considering the growing trend of salinity and the its risks and the importance of basil in the pharmaceutical and food industries, this study was conducted to investigate the role of chitosan on some physiological and biochemical properties and Phenylalanine ammonia lyase (PAL) enzyme in basil under salinity stress. Methods: After chitosan treatments at a concentration of 200 mg/L, plants were exposed to four levels of NaCl salinity stress, 25, 50, 100 and 150 mM. The activity of PAL enzyme, physiological and biochemical responses were investigated under the effect of the interaction between chitosan and concentrations of salinity stress. Results and discussion: The salinity stress has negative effects on total chlorophyll and carotenoid whereas it increased flavonoid content. In addition, chitosan at high salinity levels had a positive effect on total chlorophyll, and at all salinity levels increased carotenoids content. Catalase and peroxidase enzymes and potassium content of basil also increased in chitosan treatments, which indicates an increase defense response to salinity in plant. Chitosan also increased PAL enzyme activity, as an important parameter in the biosynthesis of phenylpropanoids, which it increased the amount of methyl cavicol of essential oil. In general, the application of chitosan has an effect on the secondary compounds in basil to improve salt-stress tolerance. | ||
کلیدواژهها [English] | ||
Mint family, Phenylpropanoid, Sodium chloride, Malon-di-aldehyde | ||
مراجع | ||
شAchnine, L., Blancaflor, E.B., Rasmussen, S. and Dixon, R.A. (2004). Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-Hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell Reports, 16 (3): 098 -109. Adam, R.P. (2001). Identification of essential oils components by gas chromatography/quadrupole mass spectroscopy (4th ed.). Carol Stream IL by Allured Publishing Corporation. Alves, L.S., Paz, V.P.S., Silva, A.J.P., Oliveira, G.X.S., Oliveira, F.E.R. and Amorim, E.L. (2015). Content, yield and chemical composition of essential oil of sweet basil plants subjected to NaCl saline stress. Revista Brasileira de Plantas Medicinais, 17 (4): 807-813. Andrade, E.H.A., Alves, C.N., Guimarães, E.F., Carreira L., Bernstein, N., Kravchik M. and Dudai. N. (2009). Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Osimum basilicum) in relation to alteration of morphological development. Annals of Applied Biology, 156 (2): 167-177. Anjum, N.A. (2015). Oxidative Damage to Plants-Antioxidant Networks and Signaling. Frontiers in Plant Science. antioxidative enzymes and proline content of sesame cultivars.Environ. Journal of Experimental Botany, 60: 344–351. Barazandeh, M. and Bagherzadeh, K. (2007). Evaluation of essential oil chemical components of Thymus daenensis Celak. collected from four regions in Esfahan province. Journal of Medicinal Plant, 6 (3), 15-19. (In Persian) Bernstein, N., Kravchik, M. and Dudai, N. (2010). Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development. Annals of Applied Biology, 156 (2): 167-177. Biles, C. and Abeles, F. (1991). Xylem sap proteins. Plant Physiology, 96: 597-601. Carter, G.A., and Knapp, A.K. (2001). Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American journal of botany, 88(4): 677-684. Castellarin, S. D., Matthews, M. A., Di Gaspero, G. and Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1): 101-112. Cha-Um, S. and Kirdmanee, C. (2009). Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pakistan Journal of Botany, 41(1): 87-98. Chutipaijit, S., Cha-Um, S. and Sompornpailin, K. (2009). Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pakistan Journal of Botany, 41(5): 2497-2506. Chun, O.K., Kim, D.O. and Lee, C.Y. (2003). Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agriculture and Food Chemistry, 51:8067-872. Dixon, R.A., Choudhary, A.D., Dalkin, D., Edwards, R., Fahrendorf, T., Gowri, G., Harrison, M.J., Lamb, C.J., Loake, G.J., Maxwell, C.A., Orr, J. and Paiva, N.L. (1992). Molecular biology ofstress induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa, In H.A, Stafford and R.K, Ibrahim (eds). Phenolic Metabolism in Plants, 91-138. Dzung, N.A. and Thang, N.T. (2002). Effects of oligoglucosamine prepared by enzyme degradation on growth of soy bean. In: Proceedings of 5th Asia-Pacific Chitin and Chitosan Symposium, January, Advances of Chitin Science, Thailand. 5: 463-467. Elhindi, K.M., Al-Suhaibani, N.A., El-Din, A.F.S., Yakout, S.M. and Al-Amri, S.M. (2016). Effect of foliar-applied iron and zinc on growth rate and essential oil in sweet basil (Ocimum basilicum L.) under saline conditions. Progress in Nutrition, 18 (3): 288-298. Falcon-Rodriguez, A.B., Cabrera, J.C., Ortega, E. and Martínez-Téllez, M.A. (2009). Concentration and physicochemical properties of chitosan derivatives determine the induction of defense responses in roots and leaves of tobacco plants. American Journal of Agricultural and Biological Sciences, 4(3): 192-200. Farouk, S. and Amany, A.R. (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 14: 14-26. Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F. and Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5): 709-711. Goodner, K.L., Mahattanataweea, K., Plotto, A., Sotomayor, J.A. and Jordan, M. J. (2006). Aromatic profiles of Thymus hyemalis and Spanish Thymus vulgaris essential oils by GC– MS/GC–O. Industrial Crops and Products, 24: 264. Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4): 597-606. Hawrylak-Nowak, B. (2009). Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological trace element research, 132(1-3): 259-269. Hendawy, S.F. and Khalid, K.A. (2005). Response of sage Salvia officinalis L. plants to zinc application under different salinity levels. Journal of Applied Science Research, 1(2): 147-155. Health, R.L. and Packer, L. (1986). Phytoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 182-198. Hu, Y. and Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168 (4): 541-549. Iriti, M. and Faoro, F. (2008). Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiology and Biochemistry, 46 (12): 1106-1111. Jaleel, C.A., Manivannan, P., Abdul Wahid, F., Al-Jubruni, H.J., Somasundaram, R. and Panneerselvam, R. (2009). Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International Journal of Agriculture & Biology. 11: 100–105. Jini, D. and Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24 (2): 97-108. Kim, H.J., Chen, F., Wang, X. and Rajapakse, C. (2005). Effect of Chitosan on the Biological Properties of Sweet Basil (Ocimum basilicum L). Journal of Agricultural and Food Chemistry, 53 (3): 696 -701. Khan, M.A., Hussain, N., Abid, M. and Imran, T. (2004). Screening of wheat (Triticum aestivum L.) cultivars for saline conditions under irrigated arid environment. Journal Scientific Research, 15: 471-477. Kuhn, N., Guan, L., Dai, Z. W., Wu, B. H., Lauvergeat, V., Gomès, E. and Delrot, S. (2013). Berry ripening: recently heard through the grapevine. Journal of experimental botany, 65(16): 4543-4559. Koca, M., Bor, M., Ozdemir, F. and Turkan, I. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 60: 344-351. Labra, M., Milele, M., Ledda, B., Grassi, F., Mazzei, M. and Sala, F. (2004). Morphological characterization of essantial oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Science, 167 (7): 25-31. Lenucci, M.S., Cadinu, D., Taurino, M., Piro, G. and Dalessandro, G. (2006). Antioxidant composition in cherry and highpigment tomato cultivars. Journal of Agriculture Food Chemistry, 54: 398– 415. Mandal, S. (2010). Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. African Journal of Biotechnology, 9: 8038-8047. Mishra, A. and Jha, B. (2011). Antioxidant response of the microalga Dunaliella salina under salt stress. Botanica Marina, 54: 195–199. Nejadhabibvash, F. and Daneshgar, M. (2019). Variation in the essential oil of Thymus kotschyanus Boiss. & Hohen. apical shoots at different developmental stages. Journal of Plant Research (Iranian Journal of Biology), 32 (2): 474-486. (In Persian) Pereira, G.J.G., Molina, S.M.G., Lea P.J. and Azevedo, R.A. (2002). Activity of antioxidant enzymes in response to cadmium in Coriandrum juncea. Plant Soil, 1239: 123-132. Pirbalouti, A.G., Malekpoor, F., Salimi, A. and Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia horticulturae, 217: 114-122. Pchyangkura, R. and Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196: 49–65. doi:10.1016/j.scienta, 09-031. Politeo, O., Jukic, M. and Milos, M. (2007). Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.). Compared with its essential oil. Food Chemistry, 101: 379-385. Said-Al, Ahl, H.A.H. and Mahmoud, A. (2010). Effect of zinc and /or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean Journal Of Applied Science, 3 (1): 97-111. Santos, C.V., Falcao, I.P., Pinto, G.C., Oliveira, H. and Loureiro, J. (2002) .Nutrient responses and glutamate and proline metabolism in sunflower plants and calli under Na2SO4 stress. Journal of plant nutrition and soil science, 165 (3): 366-372. Shao, H.B., Chu, L.Y., Lu, Z.H. and Kang, C.M. (2008). Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International Journal of Biological Sciences, 4(1): 8-14. Schütz, M. and Fangmeier, A. (2001). Growth and yield responses of spring wheat (Triticumaestivum L. cv. Minaret) to elevated CO2 and water limitation. Environmental Pollution, 114(2): 187-194. Shabala, S., Demidchik, V., Shabala, L, Cuin, T.A., Smith, SJ, Miller, A.J., Davies, J.M. and Newman, I.A. (2006). Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels. Plant Physiology, 141: 1653–1665. Shakya, P., Marslin, G., Siram, K., Beerhues, L. and Franklin, G. (2019). Elicitation as a tool to improve the profiles of highvalue secondary metabolites and pharmacological properties of Hypericum perforatum. Journal of Pharmacy and Pharmacology, 71(1): 70-82. Sheikha, S.A. and Al-Malki, F.M. (2011). Growth and chlorophyll responses of bean plants to the chitosan applications. European Journal of Scientific Research, 50(1): 124-134. Stoeva, N., Berova, M. and Zlatev, Z. (2005). Effect of arsenic on some physiological parameters in bean plants. Biologia Plantarum, 49(2); 293-296. Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P. and Mc Manse, M.T. (2010). Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, Callus Culture. African Journal of Biotechnol, 9: 145-152. Tahsili, J., Sharifi, M., Behmanesh, B., Pourbozorgi Rudsari, N. and Ziaei, M. (2010). Gene expression of eugenol O - methyl transferase and components of essential oils in (Ocimum basilicum L.) at different stages of growth. Journal of Biology, 23 (1): 25-18. Telci, I., Bayram, E., Yılmaz, G. and Avc, B. (2006). Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochemical Systematics and Ecology, 34 (4): 89-97. Tester, M. and Venport, R.D. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91: 503-527. Taheri, GH. (2015). Effects of Chitosan Spraying on Physiological Characteristics of Ferula flabelliloba (Apiaceae) Under Drought Stress. Iranian Journal of Field Crops Research, 13 (4): 728-737. (In Persian) Trotel-Aziz, P., Couderchet, M., Vernet, G. and Aziz, A. (2006). Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. European Journal of Plant Pathology, 114(4): 405-413. Tsantili, E., Shin, Y., Nock, J.F. and Watkins, C.B. (2010). Antioxidant concentrations during chilling injury development in peaches. Postharvest Biology and Technology, 57: 27–34. Wang, J.W., Zheng, L.P., Wu, J.Y. and Tan, R.X. (2006). Involvement of nitric oxide in oxidantive burst, phenylalanine ammonia-lyase activation and Taxol production induced by Low-enery ultrasound in Texus yunnanesisi cell suspension cultures. Nitric Oxide, 15 (4): 351-8. Weidner, S., Karolak, M., Karamac, M., Kosinska, A. and Amarowicz, R. (2009). Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under drought stress followed by recovery. Acta Societatis Botanicorum Poloniae, 78(2): 97-103. Wen, P.F., Chen, J.Y., Wan, S.B., Kong, W.F., Zhang, P. and Wang, W. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. J. Plant Growth Regul, 55: 1-10. Yang, F., Hu, J., Li, J., Wu, X. and Qian, Y. (2009). Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul, 58 (2): 131-136. Zagzog, O.A., Gad, M.M. and Hafez, N.K. (2017). Effect of nano-chitosan on vegetative growth, fruiting and resistance of malformation of mango. Trends in Horticultural Research, 6: 673-681. Zeng, D. and Luo, X. (2012). Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science, 2(3): 282-288. Zhishen, J., Mengcheng, T. and Jianming, W. (1999). The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559. Ziaei, M., Sharifi, M., Behmanesh, M. and Razavi, K. (2012). Gene expression and activity of phenylalanine ammonia-lyase and essential oil composition of Ocimum basilicum L. at different growth stage. Journal of Biotechnology, 10: 32-39. Zimmermann, A. and Hahlbrock, K. (1975). Light induced changes of enzyme activity in parsley cell suspension cultures. Archives of Biochemistry and Biophysics, 166: 54–62. Zou, Y., Lu, Y. and Wei, D. (2004). Antioxidant activity of flavonoid-rich extract of Hypericum perforatum L. in vitro. Journal of Agriculture and Food Chemistry, 52: 5032-5039. | ||
آمار تعداد مشاهده مقاله: 44 تعداد دریافت فایل اصل مقاله: 38 |