تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,624,740 |
تعداد دریافت فایل اصل مقاله | 8,986,814 |
مطالعه پاسخهای مورفوفیزیولوژیک و بیوشیمیایی گیاه گوجه فرنگی تیمار شده با سوربات پتاسیم تحت تنش Alternaria solani | ||
زیست شناسی کاربردی | ||
مقاله 7، دوره 37، شماره 2 - شماره پیاپی 80، شهریور 1403، صفحه 73-85 اصل مقاله (922.46 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.46284.1610 | ||
نویسندگان | ||
لیلی هنرمند1؛ نادعلی باباییان جلودار* 2؛ نادعلی باقری3؛ علی دهستانی4؛ ولی اله بابائی زاد5 | ||
1دانشجوی دکترا ،دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2استاد،گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
3دانشیار ،گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
4دانشیار ،موسسه ژنتیک و بیوتکنولوژی کشاورزی طبرستان (GABIT)، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
5دانشیار ،گروه گیاهپزشکی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
چکیده | ||
مقدمه: بیماری لکه موجی از بیماریهای مهم گوجهفرنگی بوده و کاربرد قارچکشها رایجترین روش مدیریت آن میباشد. بهدلیل مضرات زیستمحیطی قارچکشها، استفاده از ترکیبات جایگزین کمخطر و القاگرهای دفاعی موردتوجه قرار گرفته است. القاگرهای دفاعی، موجب تغییرات فیزیولوژیک تخصصی در گیاه شده و سیستمهای دفاعی میزبان را در برابر تنش تقویت میکنند. در این مطالعه، تأثیر القاگر سورباتپتاسیم (KS) روی پاسخهای فیزیولوژیک، بیوشیمیایی و دفاعی گوجهفرنگی تحت تنش قارچ بیماریزا Alternaria solani ارزیابی شد. روشها: این تحقیق به صورت اسپلیتپلات -فاکتوریل با سه فاکتور، حضور یا عدم حضور قارچ بیماریزا، استفاده از KS یا آب مقطر (شاهد) برای محلولپاشی و سه دورهزمانی برای نمونهبرداری (24، 72 و 168 ساعت پس از تلقیح) اجرا گردید. نتایج و بحث: نتایج نشان داد که وزن تر و خشک در گیاهان تلقیحشده، از گیاهان شاهد کمتر بود. بیماریزا سبب آسیب به غشای سلولی گیاه و رنگیزههای فتوسنتزی شد و مقدار MDA و Chl-a در گیاهان تلقیحشده نسبت به گیاهان تلقیحنشده بهطور معنیداری کاهش یافت. میزان فعالیت آنزیمهای POD و CAT در گیاهان تیمارشده با KS نسبت به شاهد بهطور معنیداری افزایش نشان داد. میزان فعالیت کیتیناز در گیاهان تیمارشده با KS، در 168 ساعت پس از تلقیح افزایش بسیار معنیداری نشان داد که میتواند نشانهای از تحریک سیستم ایمنی باشد. نتایج نشان داد که القاگر KS توانست روی وزن و رشد گیاهان مؤثر باشد و با افزایش فعالیت آنزیمهای آنتیاکسیدانی، اثرات منفی تنش زیستی در گیاهان را بهبود بخشد. | ||
کلیدواژهها | ||
آنزیمهای دفاعی؛ بلایت زودرس؛ قارچ بیماری زا؛ مقاومت القایی | ||
عنوان مقاله [English] | ||
Studying the morphophysiological and biochemical responses of tomato treated with potassium sorbate under Alternaria solani stress | ||
نویسندگان [English] | ||
Leyli Honarmand1؛ Nadali Babaeian Jelodar2؛ Nadali Bagheri3؛ Ali Dehestani4؛ Valiollah Babaezad5 | ||
1MSC.Agricultural Sciences and Natural Resources University | ||
2Porfosor.Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University | ||
3Associate Professor.Plant Breeding Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. | ||
4Associate Professor.Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran. | ||
5Associate Professor.Department of Plant Protection, Sari Agricultural Sciences and Natural Resources University, Sari, Iran | ||
چکیده [English] | ||
Introduction: Early blight is one of the most significant tomato diseases and fungicide application is the most common measure used to control its damage. Exploitation of generally regarded as safe (GRAS) and defense inducers have been focused on as alternative strategies to avoid environmental impacts of fungicides. Defense inducers enhance plant defense system against stresses through inducing specific changes in plant physiological characteristics. In the present study the effect of potassium sorbate (KS) on physiological, biochemical and defense response of Alternaria solani-infected tomato plants was investigated. Methods This research was conducted as split plot-factorial with three factors, presence or absence of a pathogen, the use of either KS or distilled water (control) for foliar spraying, and three time courses for sampling (24, 72, and 168 hours). Results: The results showed that the fresh and dry weights in inoculated plants were lower than that of non-inoculated plants. The pathogen caused damage to the plant cell membrane and significantly reduced photosynthetic pigments. Additionally, the amount of MDA and chla in inoculated plants was significantly decreased compared to non-inoculated plants. The activity of POD and CAT enzymes significantly increased in plants treated with KS compared to the control. Chitinase enzyme in plants treated with KS showed a significant increase in the inoculated plants 168 hours, which can be a sign of immune system stimulation. The results revealed that the KS inducer was effective on the weight and growth of plants and reduced biotic stress damages through increased activity of antioxidant and defense enzyme | ||
کلیدواژهها [English] | ||
Defense enzymes, Early blight, Induced resistance, Pathogenic fungus | ||
مراجع | ||
Adhikari. P., Oh, Y. & Panthee, D.R. (2017). Current status of early blight resistance in tomato: An update. International Journal of Molecular Sciences, 21: 18(10). Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105:121-126. Allen, R.D. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology, 107(4): 1049-1054. Bakry, B.A., El-Hariri, D.M., Mervat, S.S., & El-Bassiouny, H.M.S. (2012). Drought stress mitigation by foliar application of salicylic acid in two linseed varieties grown under newly reclaimed sandy soil. Journal of Applied Sciences Research, 8(7): 3503-3514. Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1): 276-287. Bilal, H. & Hashmi, M.S. (2023). Combination of rosemary oil and potassium sorbate controls anthracnose in mango fruit by triggering defense-related enzymes. Physiological and Molecular Plant Pathology, 127: 102112. Boller, T., Gehri, A., Mauch, F. & Vogeli, U. (1983). Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 157: 22-31. Botеva, H. (2016). Productivity and quality of open field tomato after application of bio-fertilizers. Agricultural Science and technology, 8(2): 140-143. Cham, A.K., Ojeda-Zacarias, M. del C., Lozoya-Saldana, H., Olivares-Saenz, E., Alvarado-Gomez, O.G. & Vazquez-Alvarado, R.E. (2022). Effects of elicitors on the growth, productivity and health of tomato (Solanum lycopersicum L.) under greenhouse conditions. Journal of Agricultural Science and Technology, 24(5): 1129-1142. Dahiya, N., Tewari, R., Tiwari, R.P. & Hoondal, G.S. (2005). Chitinase from Entrobacter spp. NRG4: its purification, characterization and reaction pattern. Electronic Journal of Biotechnology, 8(2). Deepak, S., Niranjan-Raja, S., Shailasreea, S., Kinia, R.K., Boland, W., Shettya, H. & Mithofer, A. (2007). Induction of resistance against downy mildew pathogen in pearl millet by a synthetic jasmonate analogon. Physiological and Molecular Plant Pathology, 71(1-3): 96-105. Dezhabad, M., Taheri, H. & Pakdaman Sardrood, B. (2020). Transcriptional response of defensive and regulatory genes involved in tomato plant hormone signaling pathways against Fusarium Wilt. Journal of Plant Molecular Breeding, 8(1): 48-56. El-Mohamedy, R., Jabnoun-Khiareddine, H. & Daami-Remadi, M. (2014). Control of root rot diseases of tomato plants caused by Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii using different chemical plant resistance inducers. Tunisian Journal of Plant Protection, 9(1): 45-55. Engel, F., Pinto, L.H., Del Ciampo, L.F., Lorenzi, L., Teixeira Heyder, C.D., Häder, D.P. & Erzinger, G.S. (2015). Comparative toxicity of physiological and biochemical parameters in Euglena gracilis to short-term exposure to potassium sorbate. Ecotoxicology, 24(1): 153-162. Farhoudi, R. (2011). Investigating the effect of salinity stress on vegetative growth, antioxidant enzyme activity and malondialdehyde concentration in rapeseed leaves. Iranian Journal of Field Crops Research, 9(1): 123-130. (In Persian) Fodil, S., Delgado, J., Varvaro, L., Yaseen, T. & Rodríguez, A. (2018). Effect of potassium sorbate (E-202) and the antifungal PgAFP protein on Aspergillus carbonarius growth and ochratoxin A production in raisin simulating media. Journal of the Science of Food and Agriculture, 98(15): 5785-5794. Ghosh, A., Lahiri, S., Das, A. & Kundu, S. (2022). Moleculer defence response in tomato against Alternaria blight: an over view. Journal of Mycopathology Research, 60(1): 23-32. Goldson, A., Lam, M., Scaman, C.H., Clemens, S. & Kermode, A. (2008). Screening of phenylalanine ammonia lyase in plant tissues, and retention of activity during dehydration. Journal of the Science of Food and Agriculture, 88(4): 619-625. Gowthami, L. (2018). Role of elicitors in plant defense mechanism. Journal of Pharmacognosy and Phytochemistry, 7(6): 2806-2812. Hosseini, F., Amiri, M.H. & Razavi, F. (2019). Improvement of anthocyanin and antioxidant properties of strawberry (cv. Amaros) by calcium lactate and potassium sorbate application. Plant productions, 42(4): 455-468. Jabnoun-Khiareddine, H., Abdallah, R., El-Mohamedy, R., Abdel-Kareem, F., Gueddes-Chahed, M., Hajlaoui, A. & Daami-Remadi, M. (2016). Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. Journal of Microbial and Biochemical Technology, 8(2): 045- 055. Jin, L., Cai, Y., Sun, C., Huang, Y. & Yu, T. (2019). Exogenous L-glutamate treatment could induce resistance against Penicillium expansum in pear fruit by activating defense-related proteins and amino acids metabolism. Postharvest Biology and Technology, 150: 148-157. Jones, R.W. & Frances, P. (2023). Differential plant response to toxins and elicitor proteins released by the potato and tomato pathogens Alternaria solani and Alternaria alternata. Journal of Plant Pathology, 105: 21-28. Khalil, M., Youssef, S., Tartoura, K. & Eldesoky, A. (2021). Comparative evaluation of physiological and biochemical alteration in tomato plants infected by Alternaria alternata in response to Trichoderma viride and Chaetomium globosum application. Physiological and Molecular Plant Pathology, 115: 101671. Leul, M., & Zhou, W.J. (1999). Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid proxidation and membrane integrity. Journal of Plant Growth Regulation, 18: 9-14. Li, Q.Y., Niu, H.B., Yin, J., Wang, M.B., Shao, H.B., Deng, D.Z., Chen, X.X., Ren, J.P. & Li, Y.C. (2008). Protective role of exogenous nitric oxide against oxidative stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces B: Biointerfaces, 65(2): 220-225. Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, F4.3.1-F4.3.8. Ma, B.L., Morison, M.J. & Videng, H.D. (1995). Leaf greenness and photosynthetic rates in soybean. Crop Science, 35(5): 1411-1414. Mauro, R.P., Rizzo, V., Leonardi, C., Mazzaglia, A., Muratore, G., Distefano, M., Sabatino, L. & Giuffrida, F. (2020). Influence of harvest Stage and rootstock genotype on compositional and sensory profile of the elongated tomato cv. “Sir Elyan”. Agriculture, 10(3): 82. Meloni, D.A., Oliva, M.A., Martinez, C.A. & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49(1): 69-76. Mir, Z.A., Ali, S., Singh, A., Yadav, P., Tyagi, A., Chaturani, G.D.G. & Grover, A. (2021). In silico analysis and overexpression of chitinase class IV gene in Brassica juncea improves resistance against Alternaria brassicae. Industrial Crops and Products, 169: 113555. Mirzadeh, Z., Najafiniya, M. & Ramezani, H. (2021). The antifungal activity of some chemical salts against Fusarium oxysporum f. sp. radicis-cucumerinum causing cucumber root and stem rot disease. Journal of Crop Protection, 10(1): 107-117. MirseyedHosseini, M., Alavipoor, E. & Delshad, E. (2017). Evaluation of different growth media for tomato seedlings to optimize production and water use. Iran Agricultural Research, 36(2): 61-70. Molaei, S., Soleimani, A., Rabiei, V. & Razavi, F. (2021). Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage. Journal of Food Biochemistry, 45(4): e13633. Nikolov, A. & Ganchev, D. (2011). In vitro antifungal examination of potassium sorbate towards some phytopathogens. Bulgarian Journal of Agricultural Science, 17(2): 191-194. Nurollahi, K. & Hasani, M. (2017). Genetic diversity of Alternaria alternata causal agent of early blight of tomato in Khuzestan province using SSRs markers. Journal of Plant Protection, 30(4): 573-586. (In Persian) Ohkawa, H., Ohishi, N. & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351-358. Olivier, C., Macneil, C.R. & Loria, J. (1999). Application of organic and inorganic salts to field-grown potato tubers can suppress silver scurf during potato storage. Plant Disease, 83(9): 814-818. Rabiei, Z., Hosseini, S., Dehestani, S., Pirdashti, H. & Beiki F. (2022). Exogenous hexanoic acid induced primary defense responses in tomato (Solanum lycopersicum L.) plants infected with Alternaria solani. Scientia Horticulturae, 295: 110841. Ragab, M.M., Ashour, A.A., Abdel-Kader, M.M., El-Mohamady, R. & Abdel-Aziz, A. (2012). In vitro evaluation of some fungicides alternatives against Fusarium Oxysporum the causal of wilt disease of pepper (Capsicum annum L.). International Journal of Accounting and Finance, 2(2): 70-77. Rai, S., Kashyap, P., Kumar, S., Kumar Srivastava, A. & Ramteke W.P. (2016). Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus, 5(1): 1939. Randhir, R., Vattem, D.A. & Shetty, K. (2006). Antioxidant enzyme response studies in H2O2‐stressed procine muscle tissue folloeing treatment with fava bean sprout extract and L‐DOPA. Journal of Food Biochemistry, 30(6): 671-698. Saltos-Rezabala, L.A., Silveira, P.R.D., Tavares, D.G., Moreira, S.I., Magalhaes, T.A., Botelho, D.M.D.S. & Alves, E. (2022). Thyme essential oil reduces disease severity and induces resistance against Alternaria linariae in tomato plants. Horticulturae, 8(10): 919. Silva, B., Picanço, B., Hawerroth, C., Silva, L. & Rodrigues, F. (2022). Physiological and biochemical insights into induced resistance on tomato against septoria leaf spot by a phosphite combined with free amino acids. Physiological and Molecular Plant Pathology. 120: 101854. Soliman, M.H. & El-Mohamedy, R.S.R. (2017). Induction of defense-related physiological and antioxidant enzyme response against powdery mildew disease in okra (Abelmoschus esculentus L.) plant by using chitosan and potassium salts. Mycobiology, 45(4): 409-420. Tang, W. & Newton, R.J. (2005). Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 46: 31-43. Vinas, M., Mendez, J.C. & Jiménez, V.M. (2020). Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants. Scientia Horticulturae, 265: 109200. Waewthongrak, W., Pisuchpen, S. & Leelasuphakul, W. (2015). Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology, 99: 44-49. Wang, C., Wang, J., Zhang, D., Cheng, J., Zhu, J. & Yang. Z. (2023). Identification and functional analysis of protein secreted by Alternaria solani. PLOS ONE, 18(3): e0281530. Youssef, S.A., Tartoura, K.A. & Greash, A.G. (2018). Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiological and Molecular Plant Pathology, 103: 16-22. | ||
آمار تعداد مشاهده مقاله: 54 تعداد دریافت فایل اصل مقاله: 50 |