- Aghaee, T. and Orouji, A. A., "Reconfigurable multi-band, graphene-based THz absorber: circuit model approach", Results in Physics, 16, 102855, 2020. https://doi.org/10.1016/j.rinp.2019.102855.
- Akowuah, E. K., Gorman, T. and Haxha, S., "Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration", Optics express, 17(26), 23511-23521, 2009. https://doi.org/10.1364/OE.17.023511.
- Alaloul, M. and Khurgin, J. B.,"Electrical control of all-optical graphene switches", Optics express, 30(2), 1950-1966, 2022. https://doi.org/1364/OE.441710.
- Bludov, Y. V., Peres, N. M., & Vasilevskiy, M. I., "Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence", Journal of Optics, 15(11), 114004, https://doi.org/10.1088/2040-8978/15/11/114004.
- Byrnes, S. J., "Multilayer optical calculations", arXiv preprint arXiv:1603.02720,
https://doi.org/10.48550/arXiv.1603.02720.
- Chen, F., Yao, D., Zhang, H., Sun, L. and Yu, C., "Tunable plasmonic perfect absorber based on a multilayer graphene strip-grating structure", Journal of Electronic Materials, 48, 5603-5608, https://doi.org/10.1007/s11664-019-07422-0.
- Cheng, J., Fan, F. and Chang, S., "Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control", Nanomaterials, 9(3), 398, https://doi.org/10.3390/nano9030398.
- Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E. and Yu, V., "Experimental review of graphene", International Scholarly Research Notices, 2012(1), 501686, 2012. https://doi.org/5402/2012/501686.
- Esquius-Morote, M., Gómez-Dı, J. S. and Perruisseau-Carrier, J., "Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz", IEEE Transactions on Terahertz Science and Technology, 4(1), 116-122, 2014. https://doi.org/1109/TTHZ.2013.2294538.
- Fuscaldo, W., Burghignoli, P., Baccarelli, P. and Galli, A., "A reconfigurable substrate–superstrate graphene-based leaky-wave THz antenna", IEEE Antennas and Wireless Propagation Letters, 15, 1545-1548, https://doi.org/10.1109/LAWP.2016.2550198.
- Gosling, J.H., Makarovsky, O., Wang, F., Cottam, N.D., Greenaway, M.T., Patanè, A., Wildman, R.D., Tuck, C.J., Turyanska, L. and Fromhold, T.M., "Universal mobility characteristics of graphene originating from charge scattering by ionised impurities", Communications Physics, 4(1), 30, 2021. https://doi.org/10.1038/s42005-021-00518-2.
- He, Z., Li, L., Ma, H., Pu, L., Xu, H., Yi, Z., Cao, X. and Cui, W., "Graphene-based metasurface sensing applications in terahertz band", Results in Physics, 21, 103795, https://doi.org/10.1016/j.rinp.2020.103795.
- Heydari, M.B., Karimipour, M. and Mohammadi Shirkolaei, M., "Analytical study of highly adjustable plasmonic modes in graphene-based heterostructure for THz applications", Journal of Optics, 52(4), 1912-1918, 2023. https://doi.org/10.1007/s12596-022-01084-8.
- Heydari, M.B. and Samiei, M.H.V., "TM-polarized Surface Plasmon Polaritons in Nonlinear Multi-layer Graphene-Based Waveguides: An Analytical Study", arXiv preprint arXiv:2101.02536, https://doi.org/10.1007/s11468-020-01336-y.
- Huang, J., Fu, T., Li, H., Shou, Z. and Gao, X., "A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface", Chinese Optics Letters, 18(1), 013102, https://doi.org/10.1364/COL.18.013102.
- Katsidis, C.C. and Siapkas, D.I., "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference", Applied optics, 41(19), 3978-3987, 2020. https://doi.org/10.1364/AO.41.003978.
- Kazemi, F., "High Q-factor compact and reconfigurable THz aperture antenna based on graphene loads for detecting breast cancer cells", Superlattices and Microstructures, 153, 106865, 2021. https://doi.org/10.1016/j.spmi.2021.106865.
- Khoubafarin Doust, S., Siahpoush, V. and Asgari, A., "The tunability of surface plasmon polaritons in graphene waveguide structures", Plasmonics, 12, 1633-1639, https://doi.org/10.1007/s11468-016-0428-6.
- Kiani, N., Hamedani, F.T. and Rezaei, P., "Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP", Micro and Nanostructures, 175, 207509, 2023. https://doi.org/10.1016/j.micrna.2023.207509.
- Li, G., Semenenko, V., Perebeinos, V. and Liu, P.Q., "Multilayer graphene terahertz plasmonic structures for enhanced frequency tuning range", Acs Photonics, 6(12), 3180-3185, 2019. https://doi.org/10.1021/acsphotonics.9b01597.
- Li, L., Liang, Y., Guang, J., Cui, W., Zhang, X., Masson, J.F. and Peng, W., "Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor", Optics express, 25(22), 26950-26957, 2017. https://doi.org/10.1364/OE.25.026950.
- Lin, I.T., "Optical properties of graphene from the THz to the visible spectral region", University of California, Los Angeles ProQuest Dissertations & Theses, 2012. 1512053.
- Liu, J.T., Liu, N.H., Li, J., Jing Li, X. and Huang, J.H., "Enhanced absorption of graphene with one-dimensional photonic crystal", Applied Physics Letters, 101 ,(5), https://doi.org/10.1063/1.4740261.
- Lu, H., Zeng, C., Zhang, Q., Liu, X., Hossain, M.M., Reineck, P. and Gu, M., "Graphene-based active slow surface plasmon polaritons", Scientific reports, 5(1), 1-7 , 2015. https://doi.org/10.1038/srep08443.
- Mehdizadeh, F. and Khazaei Nezhad Gharahtekan, M., "Design of Simple Plasmonic Sensors based on Graphene Circles in THZ Region", Iranian Journal of Applied Physics, 13(4), 7-19, 2023. https://doi.org/22051/ijap.2023.43454.1319.
- Mohadesi, V., Asgari, A. and Siahpoush, V., "Radiation characteristics of leaky surface plasmon polaritons of graphene", Superlattices and Microstructures, 119, 40-45, 2018. https://doi.org/10.1016/j.spmi.2018.04.030.
- Mohadesi, V., Asgari, A., Siahpoush, V. and Taheri, S.S., "Analysis and optimization of graphene based reconfigurable electro-optical switches", Micro and Nanostructures, 165, 207193, 2022. https://doi.org/10.1016/j.micrna.2022.207193.
- Mohadesi, V., Siahpoush, V. and Asgari, A., "Investigation of leaky and bound modes of graphene surface plasmons", Journal of Applied Physics, 122(3), https://doi.org/10.1063/1.5006061.
- Moradi, A., "Damping properties of plasmonic waves on graphene", Physics of Plasmas, 24,(7), https://doi.org/10.1063/1.4993607.
- Moradi, A., "Canonical problems in the theory of plasmonics", Springer International Publishing, 230, 2020.
- Moradi, A., "Theory of electrostatic waves in hyperbolic metamaterials", Switzerland Springer, 2023.
- Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M. and Geim, A.K., "Fine structure constant defines visual transparency of graphene", science, 320(5881), 1308-1308, 2008. https://doi.org/10.1126/science.1156965.
- Castro Neto, A.H., Guinea, F., Peres, N.M., Novoselov, K.S. and Geim, A.K., "The electronic properties of graphene", Reviews of modern physics, 81(1), 109, https://doi.org/10.1103/RevModPhys.81.109.
- Ogawa, S., Fukushima, S. and Shimatani, M., "Graphene plasmonics in sensor applications: A review", Sensors, 20(12), 3563, 2020. https://doi.org/3390/s20123563.
- Rodrigo, D., Tittl, A., Limaj, O., Abajo, F.J.G.D., Pruneri, V. and Altug, H., "Double-layer graphene for enhanced tunable infrared plasmonics", Light: Science & Applications, 6(6), e16277-e16277, 2017. https://doi.org/10.1038/lsa.2016.277.
- Shibayama, J., Mitsutake, K., Yamauchi, J. and Nakano, H., "Kretschmann‐and Otto‐type surface plasmon resonance waveguide sensors in the terahertz regime", Microwave and Optical Technology Letters, 63(1), 103-106, 2021. https://doi.org/10.1002/mop.32581.
- Sui, G., Wu, J., Zhang, Y., Yin, C. and Gao, X., "Microcavity-integrated graphene waveguide: a reconfigurable electro-optical attenuator and switch", Scientific reports, 8(1), 12445, 2018. https://doi.org/10.1038/s41598-018-30396-8.
- Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A., "Graphene research and their outputs: Status and prospect", Journal of Science: Advanced Materials and Devices, 5(1), 10-29, https://doi.org/10.1016/j.jsamd.2020.01.006.
- Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M. and Shen, Y.R., "Gate-variable optical transitions in graphene", science, 320(5873), 206-209, 2008. https://doi.org/ 10.1126/science.1152793.
- Wu, D., Wang, M., Feng, H., Xu, Z., Liu, Y., Xia, F., Zhang, K., Kong, W., Dong, L. and Yun, M., "Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene", Carbon, 155, 618-623, 2019. https://doi.org/ 10.1016/j.carbon.2019.09.024.
- Xu, J., Qin, Z., Chen, M., Cheng, Y., Liu, H., Xu, R., Teng, C., Deng, S., Deng, H., Yang, H. and Qu, S., "Broadband tunable perfect absorber with high absorptivity based on double layer graphene", Optical Materials Express, 11(10), 3398-3410, 2021. https://doi.org/10.1364/OME.439348.
- Yadav, R., Verma, A. and Raghava, N.S., "A dual-band graphene-based Yagi-Uda antenna with evaluation of transverse magnetic mode for THz applications", Superlattices and Microstructures, 154, 106881, 2021. https://doi.org/10.1016/j.spmi.2021.106881.
- Zhang, Z., Lee, Y., Haque, M.F., Leem, J., Hsieh, E.Y. and Nam, S., "Plasmonic sensors based on graphene and graphene hybrid materials", Nano Convergence, 9(1), 28, https://doi.org/10.1186/s40580-022-00319-5.
- Zhen, Z. and Zhu, H., "Structure and properties of graphene", Graphene (pp. 1-12): Elsevier, 2018. https://doi.org/10.1016/B978-0-12-812651-6.00001-X.
|