تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,493,217 |
تعداد دریافت فایل اصل مقاله | 8,884,851 |
تبیین حضور اجتماعی دانشجویان دورههای برخط بر اساس حضور شناختی، خودکارآمدی در فناوری و ادراک از جوّ یادگیری برخط (مورد مطالعه: دانشجویان دوره های برخط دانشگاه پیام نور) | ||
اندیشه های نوین تربیتی | ||
مقاله 3، دوره 20، شماره 2 - شماره پیاپی 72، تیر 1403، صفحه 35-48 اصل مقاله (523.77 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jontoe.2023.41000.3621 | ||
نویسندگان | ||
مجید ربانی* 1؛ حسین حافظی2؛ محمود اکرامی3؛ محمد رضا سرمدی4 | ||
1دانشجوی دکتری، برنامهریزی آموزش از دور، گروه علوم تربیتی، دانشگاه پیام نور، ص. پ. 4697-19395، تهران، ایران | ||
2استادیار، گروه علوم تربیتی، دانشگاه پیام نور، ص. پ. 4697-19395، تهران، ایران. | ||
3دانشیار، گروه علوم تربیتی، دانشگاه پیام نور، ص. پ. 4697-19395، تهران، ایران. | ||
4استاد، گروه علوم تربیتی، دانشگاه پیام نور، ص. پ. 4697-19395، تهران، ایران. | ||
چکیده | ||
آموزش الکترونیکی در چگونگی تفکر ما دربارۀ تجارب آموزشی از نظر ارتباط و همکاری پایدار، تحولی شگرف ایجاد کرده است. هدف از این پژوهش، تبیین حضور اجتماعی دانشجویان دوره های برخط بر اساس حضور شناختی، خودکارآمدی در فناوری و ادراک از جوّ یادگیری برخط در دانشجویان دورههای برخط دانشگاه پیام نور بود. پژوهش حاضر به لحاظ هدف کاربردی و به لحاظ ماهیت داده های گردآوری شده، کمّی و مبتنی بر رویکرد همبستگی بود. شرکت کنندگان 265 نفر از دانشجویان دانشجویان دوره های برخط دانشگاه های پیام نور استان خراسان شمالی در سال تحصیلی 99-1398 بودند که با روش نمونه گیری تصادفی خوشه ای انتخاب شدند. از پرسشنامه های حضور شناختی، حضور اجتماعی، ادراک از جوّ یادگیری برخط و خودکارآمدی رایانه ای استفاده شد. نتایج تحلیل رگرسیون چندگانه نشان داد حضور شناختی، ادراک از جوّ یادگیری برخط و خودکارآمدی رایانه ای بهصورت مثبت، حضور اجتماعی را پیشبینی میکنند؛ افزون بر این، متغیّرهای پیشبین بهطورکلی 1/50 درصد از واریانس حضور اجتماعی را تبیین میکند. بهطورکلی نتایج حاکی از اهمیت نقش متغیّرهای حضور شناختی، ادراک از جوّ یادگیری برخط و خودکارآمدی رایانهای در پیش بینی حضور اجتماعی بود؛ بنابراین چنانچه با استفاده از روش های آموزشی بتوان میزان حضور شناختی، ادراک از جوّ یادگیری برخط و خودکارآمدی رایانه ای را افزایش داد، میتوان سطح حضور اجتماعی را به میزان قابل ملاحظه ای ارتقا داد و از این طریق به رشد حضور اجتماعی در دانشجویان دورهه ای برخط کمک شود. | ||
کلیدواژهها | ||
حضور اجتماعی؛ حضور شناختی؛ خودکارآمدی در فناوری و ادراک از جوّ یادگیری برخط | ||
عنوان مقاله [English] | ||
Explaining the Social Presence of Online Course Students based on Cognitive Presence, Technological Self Efficacy and Perception of Online Learning Climate (Case Study: Payame Noor University Online Course Students) | ||
نویسندگان [English] | ||
Majid Rabani1؛ Hossein Hafezi2؛ Mahmoud Ekrami3؛ Mohammadreza Sarmadi4 | ||
1Ph.D. Student in Distance Education Planning, Department of Educational Sciences, Payame Noor University(PNU), P. O. Box: 19395-4697, Tehran, Iran | ||
2Assistant Professor, Department of Educational Sciences, Payame Noor University(PNU), P. O. Box: 19395-4697, Tehran, Iran. | ||
3Associate Professor, Department of Educational Sciences, Payame Noor University (PNU), P. O. Box: 19395-4697, Tehran, Iran. | ||
4Professor, Department of Educational Sciences, Payame Noor University (PNU), P. O. Box: 19395-4697, Tehran, Iran. | ||
چکیده [English] | ||
E-learning has revolutionized the way we think about educational experiences in terms of sustainable communication and collaboration. The purpose of this research was to explain the social presence of online course students based on cognitive presence, self-efficacy in technology and perception of the online learning atmosphere in Payam Noor University online course students. The current research was applied in terms of its purpose and in terms of the nature of the collected data, it was quantitative and based on the correlation approach. The participants were 265 students of online courses at Payam Noor universities in North Khorasan province in the academic year of 2018-2019, who were selected by cluster random sampling method. cognitive presence, social presence, perception of online learning environment and computer self-efficacy questionnaires were used. the results of multiple regression analysis showed that cognitive presence, perception of online learning atmosphere and computer self-efficacy positively predict social presence; In addition, predictor variables generally explain 1.50% of the variance of social presence. In general, the results indicated the importance of the variables of cognitive presence, perception of online learning atmosphere and computer self-efficacy in predicting social presence; Therefore, if it is possible to increase the amount of cognitive presence, perception of the online learning atmosphere and computer self-efficacy by using educational methods, the level of social presence can be improved to a considerable extent, and in this way, the growth of social presence. Help students in online courses. Introduction The reason social presence is emphasized in online learning is that online and virtual learning experts believe that social constructivism is an important factor for improving interpersonal communication and learning quality. Social presence is influenced by various factors that learners gain from their learning experiences. More specifically, social presence can affect learners' motivation, teacher’s satisfaction, and real learning results as well as perceived learning. In addition, social presence has consequences for the design of the training course (Richardson et al., 2017) and even for retention and the desire to enroll in the online course (Liu et al.,2022). Studies have reported cognitive presence as one of the variables that play a significant role in the social presence of students in online courses. Cognitive presence refers to the degree to which learners in a specific combination in a research community are able to construct meaning through continuous communication (Gio et al., 2021). Studies have shown that self-efficacy, another variable that plays a significant role in the social presence of students in online courses, quickly spreads in special areas such as computer use and users' beliefs about their abilities. Technological self-efficacy indicates one’s judgment of their ability to use the computer to do specific tasks. In addition, studies have shown that perception of the online learning climate is another variable that plays a significant role in the social presence of students in online courses. Kaufman, Seleno, and Frisby (2016) quoting Cole, Lennon, and Weber (2019) define "online classroom space" as "a perceived relationship between instructor and student interaction in an online class." Identifying the factors that affect cognitive presence, social presence, and students' perception of the online learning climate can help to have a clearer view of the nature of the online learning environment, and also provide clear guidelines for educational designers to develop learning plans. Teachers, curriculum designers and those involved in online teaching should be equipped with the necessary tools in online education and participation as much as possible in this space. Therefore, according to the stated contents, the aim of the present study is to explain the social presence of online course students based on cognitive presence, technological self-efficacy and perception of the online learning climate in Payame Noor University online course students. Methodology The current research was applied in terms of its purpose and in terms of the nature of the collected data, it was quantitative and based on the correlation approach. The statistical population of this study was all the students of Payame Noor University in North Khorasan Province who had online courses in the academic year 2020-2021. To determine the sample size, the Krejci-Morgan method was used. Finally, 265 completed questionnaires of cognitive presence, social presence, self-efficacy in technology and online learning climate were analyzed. In this research, mean and standard deviation, simple correlation coefficient and regression methods were used. Results The values for mean and standard deviation were 15.38±42.14 for cognitive presence, 41.87±42.22 for technological self-efficacy, 96.86±09.26 for social presence, and 34.51±22.16 for online learning climate. Pearson’s correlation coefficient was 0.69 between cognitive presence and social presence, 0.55 between self-efficacy and social presence, and 0.39 between social presence and online learning climate, all of which are significant (P<0.01). Also, the results of simultaneous multiple regression of cognitive presence, technological self-efficacy and perception of online learning climate explained 50.4% of social presence. Discussion and conclusion This research aimed to investigate the role of cognitive presence, technological self-efficacy and perception of online learning climate in predicting the social presence of students of Payame Noor University's online courses. The findings showed that cognitive presence, technological self-efficacy and perception of online learning climate play a decisive role in predicting changes in the social presence of online course students. Students who have a higher level of technological self-efficacy and perception of the online learning climate enjoy higher academic success in online courses and accordingly overestimate their abilities. This factor itself can increase the level of social presence of students in online courses. | ||
کلیدواژهها [English] | ||
Social presence, cognitive presence, technological self-efficacy, perception of online learning climate | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Amin, M., Ryu, K., Cobanoglu, C. and Nizam, A., (2021). Determinants of online hotel booking intentions: website quality, social presence, affective commitment, and e-trust. Journal of Hospitality Marketing & Management, 30 (7), pp.845-870. https://doi.org/10.1080/19368623.2021.1899095 Anderson, A (2019). Virtual Reality, Augmented Reality and Artificial Intelligence in Special Education. (H. Zare; S, Hadadi, Translators) Arjmand Pub (2023) (Text in Persian) Bandura, A. (1994). Self-efficacy. New York, NY: Academic Press. Basak, S., Wotto, M., & Belanger, P. (2018). E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. E-Learning and Digital Media, 15(4), 191–216. https://doi.org/10.1177/2042753018785180 Behl, A., Jayawardena, N., Pereira, V., Islam, N., Del Giudice, M. and Choudrie, J., (2022). Gamification and e-learning for young learners: A systematic literature review, bibliometric analysis, and future research agenda. Technological Forecasting and Social Change, 176, p.121445. https://doi.org/10.1016/j.techfore.2021.121445 Bergman, H. F. (2001). "The Silent University": The Society to Encourage Studies at Home, 1873-1897. The New England Quarterly, (74)3, 447-47, https://doi.org/10.2307/3185427 Bruijns, B.A., Vanderloo, L.M., Johnson, A.M., Adamo, K.B., Burke, S.M., Carson, V., Heydon, R., Irwin, J.D., Naylor, P.J., Timmons, B.W. and Tucker, P., (2022). Change in pre-and in-service early childhood educators’ knowledge, self-efficacy, and intentions following an e-learning course in physical activity and sedentary behaviour: a pilot study. BMC Public Health, 22(1), pp.1-13. https://doi.org/10.1186/s12889-022-12591-5 Caruth, G. D. & Caruth, D. L. (2013). The Impact of Distance Education On Higher Education: A Case Study of The United States. Turkish Online Journal of Distance Education, 14 (4), 121-131. https://dergipark.org.tr/en/pub/tojde/issue/16898/176095 Chen Y, Lei J, Cheng J, (2019). What if Online Students Take on the Responsibility: Students' Cognitive Presence and Peer Facilitation Techniques. Online Learning. 23(1):37-61. http://dx.doi.org/10.24059/olj.v23i1.1348 Cobb, S.C., (2009). Social presence and online learning: A current view from a research perspective. Journal of Interactive Online Learning, 8(3). https://www.learntechlib.org/p/109399/ Cole M, Lindeque PK, Fileman E, Clark J, Lewis C, Halsband C, Galloway TS, (2016). Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environmental science & technology. 15;50(6):3239-46. https://doi.org/10.1021/acs.est.5b05905 Currat, L., Suppan, M., Gartner, B.A., Daniel, E., Mayoraz, M., Harbarth, S., Suppan, L. and Stuby, L., (2022). Impact of Face-to-Face Teaching in Addition to Electronic Learning on Personal Protective Equipment Doffing Proficiency in Student Paramedics: Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(5), p.3077. https://doi.org/10.3390/ijerph19053077 Dal Santo, L., Peña-Jimenez, M., Canzan, F., Saiani, L. and Battistelli, A., (2022). The emotional side of the e-learning among nursing students: The role of the affective correlates on e-learning satisfaction. Nurse Education Today, p.105268. https://doi.org/10.1016/j.nedt.2022.105268 Dempsey, P.R. and Zhang, J., (2019w). Re-examining the construct validity and causal relationships of teaching, cognitive, and social presence in Community of Inquiry framework. Online Learning, 23(1), pp.62-79. https://doi.org/10.24059/olj.v23i1.1419 Ferri F, Grifoni P, Guzzo T (2020). Online learning and emergency remote teaching: Opportunities and challenges in emergency situations. Societies.10(4):86. https://doi.org/10.3390/soc10040086 Finn AN, Schrodt P (2016). Teacher discussion facilitation: A new measure and its associations with students’ perceived understanding, interest, and engagement. Communication Education. 1;65(4):445-62. DOI:10.1080/03634523.2016.1202997 Garrison DR, Cleveland-Innes M, (2005). Facilitating cognitive presence in online learning: Interaction is not enough. The American journal of distance education. 19(3):133-48. https://doi.org/10.1207/s15389286ajde1903_2 Garrison, R., (2000). Theoretical challenges for distance education in the 21st century: A shift from structural to transactional issues. International Review of Research in Open and Distributed Learning, 1(1), pp.1-17. DOI: https://doi.org/10.19173/irrodl.v1i1.2 Garrison, D. R. (2017). E-learning in the 21st century: A community of inquiry framework for research and practice (3rd ed.). Guo, P., Saab, N., Wu, L. and Admiraal, W., (2021). The Community of Inquiry perspective on students' social presence, cognitive presence, and academic performance in online project‐based learning. Journal of Computer Assisted Learning, 37(5), pp.1479-1493. https://doi.org/10.1111/jcal.12586 Gurjar, N., (2019. Embedding Social Media to Enhance Social Presence: Perceived Learning and Cognitive Engagement in an Online Graduate Course. In Society for Information Technology & Teacher Education International Conference (pp. 2730-2739). https://www.learntechlib.org/primary/p/208036/. Hamdan, K.M., Al-Bashaireh, A.M., Zahran, Z., Al-Daghestani, A., Samira, A.H. and Shaheen, A.M., (2021). University students' interaction, Internet self-efficacy, self-regulation and satisfaction with online education during pandemic crises of COVID-19 (SARS-CoV-2). International Journal of Educational Management. Vol. 35 No. 3, pp. 713-725. https://doi.org/10.1108/IJEM-11-2020-0513 Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020). The difference between emergency remote teaching and online learning. EDUCAUSE Review. Creative Education, Vol.11 No.7, https://doi.org/10.4236/ce.2020.117071 Hyman, P. (2012) The year of the disruptive education: As college tuitions soar, various online models vie to educate college students worldwide—at no cost. Communications of the ACM: 55(12) doi:10.1145/2380656.2380664 İlic, U. (2022). The Impact of ICT Instruction on Online Learning Readiness of Pre-Service Teachers. Journal of Learning and Teaching in Digital Age, 7 (1), 116-126. https://doi.org/10.53850/joltida.1007868 Jin, S., Fan, M. and Kadir, A., (2022). Immersive Spring Morning in the Han Palac e: Learning Traditional Chinese Art Via Virtual Reality and Multi-Touch Tabletop. International Journal of Human–Computer Interaction, 38(3), pp.213-226. https://doi.org/10.1080/10447318.2021.1930389 Kabir, H., Tonmon, T.T., Hasan, M., Biswas, L., Chowdhury, M., Hasnat, A., Islam, M.D., Rahman, M. and Mitra, D.K., (2022). Association between preference and e-learning readiness among the Bangladeshi female nursing students in the COVID-19 pandemic: a cross-sectional study. Bulletin of the National Research Centre, 46(1), pp.1-10. https://doi.org/10.1186/s42269-022-00697-0 Kalman, R., Macias Esparza, M. and Weston, C., (2020). Student views of the online learning process during the COVID-19 pandemic: A comparison of upper-level and entry-level undergraduate perspectives. Journal of Chemical Education, 97(9), pp.3353-3357. https://doi.org/10.1021/acs.jchemed.0c00712 Kang, M., Kim, J. and Kang, J., (2008). Relationships among Self-efficacy, Metacognition, Cognitive presence, Flow, and Learning Outcomes in web-based PBL. Society for Information Technology & Teacher Education International (pp. 471-476). https://www.learntechlib.org/primary/p/27210/. Kaufmann, R., Sellnow, D.D. and Frisby, B.N., (2016). The development and validation of the online learning climate scale (OLCS). Communication Education, 65(3), pp.307-321. http://dx.doi.org/10.1080/03634523.2015.1101778 Kehrwald, B., 2008. Understanding social presence in text‐based online learning environments. Distance Education, 29(1), pp.89-106. https://doi.org/10.1080/01587910802004860 Kilis, S., & Yildirim, Z. (2019). Posting patterns of students’ social presence, cognitive presence, and teaching presence in online learning. Online Learning, 23(2), 179-195. https://doi.org/10.24059/olj.v23i2.1460 Kreijns, K., Xu, K. and Weidlich, J., 2021. Social presence: Conceptualization and measurement. Educational Psychology Review, pp.1-32. DOI:10.1007/s10648-021-09623-8 Lee, C.Y., (2015). Changes in self-efficacy and task value in online learning. Distance Education, 36(1), pp.59-79. https://doi.org/10.1080/01587919.2015.1019967 Lee, S.M., (2014). The relationships between higher order thinking skills, cognitive density, and social presence in online learning. The internet and higher education, 21, pp.41-52. https://doi.org/10.1016/j.iheduc.2013.12.002 Lei, S. A., & Gupta, R. K. (2010). College distance education courses: Evaluating benefits and costs from institutional, faculty and students' perspective. Distance Education, 616-631. https://doi.org/10.4236/ojn.2015.511108 Lin, T.J., (2021). Exploring the differences in Taiwanese university students’ online learning task value, goal orientation, and self-efficacy before and after the COVID-19 outbreak. The Asia-Pacific Education Researcher, 30(3), pp.191-203. https://doi.org/10.1007/s40299-021-00553-1 Liu B, Xing W, Zeng Y, Wu Y (2022). Linking cognitive processes and learning outcomes: The influence of cognitive presence on learning performance in MOOCs. British Journal of Educational Technology, 53(5), p 1459-1477, https://doi.org/10.1111/bjet.13193 Liu, C., Bao, Z. and Zheng, C., (2019). Exploring consumers’ purchase intention in social commerce: An empirical study based on trust, argument quality, and social presence. Asia Pacific Journal of Marketing and Logistics. http://dx.doi.org/10.1108/APJML-05-2018-0170 Ma, K., Chutiyami, M., Zhang, Y. and Nicoll, S., (2021). Online teaching self-efficacy during COVID-19: Changes, its associated factors and moderators. Education and information technologies, 26(6), pp.6675-6697.https://doi.org/10.1007/s10639-021-10486 Mousavi A, Mohammadi A, Mojtahedzadeh R, Shirazi M, Rashidi H, (2020). E-Learning Educational Atmosphere Measure (EEAM): A New Instrument for Assessing E-Students' Perception of Educational Environment. Research in Learning Technology Vol. 28, pp1-12, http://dx.doi.org/10.25304/rlt.v28.2308 (Text in Persian) Munir, F., Saeed, I., Shuja, A. and Aslam, F., (2021). Students' Fear of COVID-19, Psychological Motivation, Cognitive Problem-Solving Skills and Social Presence in Online Learning. International Journal of Education and Practice, 9(1), pp.141-154. https://doi.org/10.18488/journal.61.2021.91.141.154 Oh, J. and Ki, E.J., 2019. Factors affecting social presence and word-of-mouth in corporate social responsibility communication: Tone of voice, message framing, and online medium type. Public Relations Review, 45(2), pp.319-331. https://doi.org/10.1016/j.pubrev.2019.02.005 Panjaburee P, Komalawardhana N, Ingkavara T, (2022). Acceptance of personalized e-learning systems: a case study of concept-effect relationship approach on science, technology, and mathematics courses. Journal of Computers in Education. 5:1-25. https://doi.org/10.1016/j.compedu.2011.10.008 Parrish, C.W., Guffey, S.K., Williams, D.S., Estis, J.M. and Lewis, D., (2021). Fostering Cognitive Presence, Social Presence and Teaching Presence with Integrated Online—Team-Based Learning. TechTrends, 65(4), pp.473-484. https://doi.org/10.1007/s11528-021-00598-5 Pham, L., Kim, K., Walker, B., DeNardin, T. and Le, H., (2022). Development and validation of an instrument to measure student perceived e-learning service quality. In Research Anthology on Service Learning and Community Engagement Teaching Practices (pp. 597-625). http://dx.doi.org/10.4018/IJEIS.2019040102 Priyadarshini A, Bhaumik R, (2020). E-readiness of Senior School Learners to Online Learning Transition amid COVID-19 Lockdown. Asian Journal of Distance Education. 15(1):244-56. Rahayu NW, Ferdiana R, Kusumawardani SS, (2022). A systematic review of ontology use in E-Learning recommender system. Computers and Education: Artificial Intelligence, A systematic review of ontology use in E-Learning recommender system,V3, https://doi.org/10.1016/j.caeai.2022.100047 Rahmat, N. H., Sukimin, I. S., Taib, S. A., Amir, N., & Abidin, N. S. Z. (2022). Investigating Cognitive Presence in Learning Academic Writing Online. International Journal of Academic Research in Business and Social Sciences, 12(1), 2167–2178. http://dx.doi.org/10.6007/IJARBSS/v12-i1/12191 Richardson, J. C., Maeda, Y., Lv, J., & Caskurlu, S. (2017). Social presence in relation to students' satisfaction and learning in the online environment: A meta-analysis. Computers in Human Behavior, 71, 402-417. https://doi.org/10.1016/j.chb.2017.02.001 Rizzo, A; Bouchard, S (2019). Virtual Reality for Psychological and Neurocognitive Interventions (Virtual Reality Technologies for Health and Clinical Applications). (H, Zare, M.H, Abdollahi, E, Azad Translators) (2022) (Text in Persian) Rolim, V., Ferreira, R., Lins, R.D. and Gǎsević, D., (2019). A network-based analytic approach to uncovering the relationship between social and cognitive presences in communities of inquiry. The Internet and Higher Education, 42, pp.53-65. https://doi.org/10.1016/j.iheduc.2019.05.001 Safari,M ., Ekrami,M ., Hafezi, H & Karimi Dashtaki,A.(2023). Proposing a Causal Model to Predict Self-regulated Online Learning Based on Metacognition—Mediated by Online Learning Readiness: A Path Analysis. The Quarterly Journal of New thoughts on Education,19(3), 179-203. https://doi.org/10.22051/jontoe.2022.39693.3538 (Text in Persian) Shea, P., & Bidjerano, T. (2009). Community of Inquiry as a theoretical framework to foster “epistemic engagement” and “cognitive presence” in online education. Computers and Education, 52(3), 543-553. https://doi.org/10.1016/j.compedu.2008.10.007 Susilowati, N., Mahmud, A. and Sari, P.N. (2022). Communication Skill, Student Engagement and Self-Efficacy: Flow on Effect on Student Online Learning. Journal of Education Technology, 6(1). https://doi.org/10.23887/jet.v6i1.41941 Swan, K. (2005). A constructivist model for thinking about learning online. In J. Bourne & J. C. Moore (Eds.), Elements of quality online education: Engaging communities (pp. 13-30). Needham, MA: Sloan-C. Tang, Y.M., Chen, P.C., Law, K.M., Wu, C.H., Lau, Y.Y., Guan, J., He, D. and Ho, G.T., (2021). Comparative analysis of Student's live online learning readiness during the coronavirus (COVID-19) pandemic in the higher education sector. Computers & Education, 168(1),1-17. https://doi.org/10.1016/j.compedu.2021.104211 Tu, C.-H. (2005). From presentation to interaction: New goals for online learning technologies. Educational Media International, 42(3), 189-206. http://dx.doi.org/10.1080/09523980500161072 Ung, L.L., Labadin, J. and Mohamad, F.S., (2022). Computational thinking for teachers: Development of a localised E-learning system. Computers & Education, 177, p.104379 https://doi.org/10.1016/j.compedu.2021.104379. Wang R, Li Y, (2022). Exploring College Students' Self-Presentation Behaviors, Motivations and Relationship with Presence in Online Learning Space. In2022 11th International Conference on Educational and Information Technology (ICEIT) 6 (pp. 93-98(. https://doi.org/10.1109/ICEIT54416.2022.9690724 Wang, C.H. and Shan, S., (2018). The effects of self-efficacy on learners’ perceptions of cognitive presence in online collaborative learning activities. PEOPLE: International Journal of Social Sciences, 3(3), pp.1144-1172. https://doi.org/10.20319/pijss.2018.33.11441172 Wheeler, S. (2012). e-Learning and digital learning. In N.M. Seel (Ed.), Encyclopedia of the Sciences of Learning (pp. 1109–1111). https://doi.org/10.1007/978-1-4419-1428-6_431 Wiranto E, Kristiawan M, Fitriani Y, (2021). Learning atmosphere during the Covid-19 pandemic. Edunesia: Jurnal Ilmiah Pendidikan.;2(2):387-99. https://doi.org/10.51276/edu.v2i2.133 Yan F, Wu N, Iliyasu AM, Kawamoto K, Hirota K, (2022). Framework for identifying and visualising emotional atmosphere in online learning environments in the COVID-19 Era. Applied Intelligence. 6:1-7. https://doi.org/10.1007/s10489-021-02916 Ye l, Kuang, M & Liu S.(2022). ICT Self-Efficacy, Organizational Support, Attitudes, and the Use of Blended Learning: An Exploratory Study Based on English Teachers in Basic Education. Frontiers in Psychology.13:1-11. https://doi.org/10.3389/fpsyg.2022.941535 Yusuf, B.N. and Ahmad, J., (2020). Are we prepared enough? A case study of challenges in online learning in a private higher learning institution during the Covid-19 outbreaks. Advances in Social Sciences Research Journal, 7(5), pp.205-212. https://doi.org/10.14738/assrj.75.8211 Zhang, Y., Tian, Y., Yao, L., Duan, C., Sun, X. and Niu, G., (2022). Individual differences matter in the effect of teaching presence on perceived learning: From the social cognitive perspective of self-regulated learning. Computers & Education, p.104427. https://doi.org/10.1016/j.compedu.2021.104427 Zhao L, Cao C, Li Y, Li Y (2022). Determinants of the digital outcome divide in E-learning between rural and urban students: Empirical evidence from the COVID-19 pandemic based on capital theory. Computers in Human Behavior. 1(130):107177. https://doi.org/10.1016/j.chb.2021.107177 Zhu M, Herring SC, Bonk CJ, (2019). Exploring presence in online learning through three forms of computer-mediated discourse analysis. Distance Education. 3;40(2):205-25. https://doi.org/10.1080/01587919.2019.1600365 | ||
آمار تعداد مشاهده مقاله: 223 تعداد دریافت فایل اصل مقاله: 196 |