
تعداد نشریات | 25 |
تعداد شمارهها | 954 |
تعداد مقالات | 7,830 |
تعداد مشاهده مقاله | 13,149,853 |
تعداد دریافت فایل اصل مقاله | 9,317,572 |
سنتز و ارزیابی فعالیت ضد باکتریایی ذرات لیپوزومی حاوی پپتید نوترکیب CAP18 | ||
زیست شناسی کاربردی | ||
مقاله 1، دوره 37، شماره 2 - شماره پیاپی 80، شهریور 1403، صفحه 1-14 اصل مقاله (972.83 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.44846.1586 | ||
نویسندگان | ||
فائزه حبیب الهی1؛ آزاده لهراسبی نژاد* 2؛ اکبر حسینی پور3 | ||
1کارشناسی ارشد، بخش بیوتکنولوژی کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2دانشیار، پژوهشکده فناوری تولیدات گیاهی دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
3دانشیار، بخش گیاهپزشکی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
چکیده | ||
مقدمه: پپتیدهای ضد باکتریایی به طور گسترده به عنوان آنتی بیوتیکهای زیستی بالقوه علیه باکتریها مورد بررسی قرار گرفتهاند. با این حال، تخریب پروتئولیتیک و تغییرات ساختاری ممکن است منجر به کاهش فعالیت ضد باکتریایی آنها شود. محصور شدن پپتیدها در لیپوزوم می تواند روش موثری برای رفع این گونه مشکلات باشد. روشها: دراین مطالعه CAP18 نوترکیب (rCAP18) به عنوان یک پپتید ضد باکتریایی، پس از تولید و خالص سازی، درون لیپوزومهای حاوی فسفاتیدیل کولین محصور شد. ویژگیهای اصلی لیپوزومها مانند سنجش گروههای عاملی، اندازه، کارایی کپسولاسیون و مورفولوژی آن بررسی شد. فعالیت ضد باکتریایی rCAP18 آزاد و محصور در لیپوزوم (Lipo@rCAP18) علیه باکتریهای Escherichia coli، Pseudomonas aeruginosa، Xanthomonas citri subsp. citri و Staphylococcus aureus بر اساس اندازه گیری پارامترهای MIC و MBC ارزیابی و مقایسه شد. نتایج و بحث: یافتههای بدست آمده نشان دادند که کمترین غلظت مهارکنندگی rCAP18 (حالت آزاد) برای سویه E. coli، P. aeruginosa ، X. citri و S. aureus به ترتیب معادل 135، 101، 80 و بیشتر از 320 میکروگرم بر میلیلیتر تعیین شد. مقادیر MIC مربوط به rCAP18 محصور در لیپوزوم برای باکتریهای ذکر شده در بالا به ترتیب بیشتر از 320، 135، 180 و 320 میکروگرم بر میلیلیتر بدست آمد. مقایسه نتایج مربوط به MIC نشان داد کهrCAP18 در حالت آزاد و یا به فرم Lipo@rCAP18 تاثیر بازدارندگی بیشتری علیه باکتریهای P. aeruginosa و X. citri دارد. بنابراین، وزیکولهای حاوی پپتیدهای ضد باکتریایی می توانند بعنوان ابزار قدرتمندی جهت حفظ عملکرد و نگهداری پپتیدهای فعال طی زمان به کار روند. | ||
کلیدواژهها | ||
پپتید نوترکیب CAP18؛ خاصیت ضد باکتریایی؛ فسفاتیدیل کولین؛ لیپوزوم | ||
عنوان مقاله [English] | ||
Synthesis and antibacterial evaluation of liposomal particles containing the recombinant peptide CAP18 | ||
نویسندگان [English] | ||
Faezeh Habibollahi1؛ Azadeh Lohrasbi-Nejad2؛ Akbar Hosseinipour3 | ||
1M.Sc. in Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Associate Professor, Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Associate Professor, Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
Introduction: Antibacterial peptides have been widely investigated as potential bio-antibiotics against bacteria. However, the proteolytic degradation and structural changes may lead to a decrease in their antibacterial activity. Encapsulating peptides in liposomes may be a suitable method to solve such problems. Methods: This study used the recombinant CAP18 (rCAP18) as an antibacterial peptide. After production and purification, encapsulation was done inside the liposomes constructed by phosphatidylcholine. The main characteristics of liposomes, such as size, morphology, type of functional groups, and encapsulation efficiency, were investigated. Antibacterial activity of free and encapsulated rCAP18 in the liposomes (Lipo@rCAP18) against Escherichia coli, Pseudomonas aeruginosa, Xanthomonas citri subsp. citri, and Staphylococcus aureus was evaluated and compared based on the MIC and MBC values. Results and discussion: The obtained findings showed that the lowest inhibitory concentration of free rCAP18 for E. coli, P. aeruginosa, X. citri, and S. aureus strains was determined to be 135, 101, 80, and > 320 µg/ml. MIC value of rCAP18 enclosed in liposomes was >320, 135, 180, and 320 µg/ml, for the strains mentioned above, respectively. The comparison of MIC results showed that free and encapsulated forms of rCAP18 have a more growth-inhibitory effect against P. aeruginosa, X. citri strains. Consequently, vesicles containing antibacterial peptides can be used as a powerful method to preserve their function and maintain the active peptides over time. | ||
کلیدواژهها [English] | ||
Antibacterial property, phosphatidylcholine, Liposome, Recombinant CAP18 | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Agerberth, B., Gunne, H., Odeberg, J., Kogner, P., Boman, H. G., & Gudmundsson, G. H. (1995). FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proceedings of the National Academy of Sciences, 92, 195-199. Alipour, M., Halwani, M., Omri, A., & Suntres, Z. E. (2008). Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int. J. Pharm. 2008, 355, 293–298. International Journal of Pharmaceutics, 355, 293-298. Breukink, E., & de Kruijff, B. (1999). The lantibiotic nisin, a special case or not? Biochimica et Biophysica Acta, 1462, 223e234. Cantor, S., Vargas, L., Rojas A, O. E., Yarce, C. J., Salamanca, C. H., & Oñate-Garzon, J. (2019). Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria. International Journal of Molecular Sciences, 20, 680. Chen, N., Jiang, C. (2023). Antimicrobial peptides: Structure, mechanism, and modification. European Journal of Medicinal Chemistry, 255, 115377. Ciumac, D., Gong, H., Hu, X., & Lu, J. R. (2019). Membrane targeting cationic antimicrobial peptides. Journal of colloid and interface science, 537, 163-185. CLSI. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute. Colas, J. C., Shi, W., Rao, V. S. N. M., Omri, A., Mozafari, M. R., & Singh, H. (2007). Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 38, 841e847. da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21, 284-292. Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058e1071. Eroglu, İ., & İbrahim, M. (2020). Liposome-ligand conjugates: a review on the current state of art. Journal of Drug Targeting, 28, 225-244. Gennaro, R., Skerlavaj, B., & Romeo, D. (1989). Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infection and immunity, 57, 3142-3146. Gomaa, A. I., Martinent, C., Hammami, R., Fliss, I., & Subirade, M. (2017). Dual Coating of Liposomes as Encapsulating Matrix of Antimicrobial Peptides: Development and Characterization. Frontiers in Chemistry, 5, 00103. Habibollahi, F., Hosseinipour, A., & Lohrasbi‐Nejad, A. (2022). Antibacterial activity of the CAP18 peptide against Xanthomonas citri ssp. citri, the causative agent of citrus canker, as evaluated by in vitro and in silico studies. Annals of Applied Biology, 181, 93-106. Ishii, F., & Yoshihide, N. (2001). Simple and convenient method for estimation of marker entrapped in liposomes. Journal of dispersion science and technology, 22, 97-101. Jesorka, A., & Orwar, O. (2008). Liposomes: technologies and analytical applications. Annual Review of Analytical Chemistry, 1, 801-803. Kelly L, B., & Hancock, R. E. W. (2006). Cationic host defense (antimicrobial) peptides. Current opinion in immunology, 18, 24-30. Laridi, R., Kheadr, E. E., Benech, R. O., Vuillemard, J. C., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal, 13, 325e336. Larrick, J. W., Hirata, M., Zheng, H., Zhong, J., Bolin, D., Cavaillon, J. M., Warren, H. S., & Wright, S. C. (1994). A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. Journal of immunology 152, 231-240. Larrick, J. W., Morgan, J. G., Palings, I., Hirata, M., & Yen, M. H. (1991). Complementary DNA sequence of rabbit CAP18—a unique lipopolysaccharide binding protein. Biochemical and biophysical research communications, 179, 170-175. Liu, J., Huang, R., Song, Q., Xiong, H., Ma, J., Xia, R., & Qiao, J. (2021). Combinational antibacterial activity of nisin and 3-phenyllactic acid and their co-production by engineered Lactococcus lactis. Frontiers in Bioengineering and Biotechnology, 9, 612105. Millette, M., Le Tien, C., Smoragiewicz, W., & Lacroix, M. (2007). Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control, 18, 878-884. Mosquera, M., Gimenez, B., Da Silva, I. M., Boelter, J. F., Montero, P., Gómez-Guillen, M. C., & Brandelli, A. (2014). Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry, 156, 144-150. Mozafari, M. R., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008a). Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research, 18, 309e327. Mozafari, M. R., Khosravi-Darani, K., Borazan, G. G., Cui, J., Pardakhty, A., & Yurdugul, S. (2008b). Encapsulation of food International Journal of Food Properties, 11, 833e844. Mugabe, C., Halwani, M., Azghani, A. O., Lafrenie, R. M., & Omri, A. (2006). Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 50, 2016e2022. Narsaiah, K., Jha, S., Wilson, R. A., Mandge, H., Manikantan, M., & Malik, R. (2013). Pediocin-loaded nanoliposomes and hybrid alginate–nanoliposome delivery systems for slow release of pediocin. Bionanoscience, 3, 37–42. Nikpoor, M., Lohrasbi-Nejad, A., & Zolala, J. (2022). Heterologous Expression and Functional Characterization of CAP18 from Oryctolagus Cuniculus. Reports of Biochemistry and Molecular Biology, 10, 622-632. Patel, V. (2020). Liposome: A novel carrier for targeting drug delivery system. Asian Journal of Pharmaceutical Research and Development, 8, 67-76. Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative food science & emerging technologies, 36, 287-293. Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D., & W., E. D. (2016). Effect of liposomal encapsulation on the recovery and antioxidant properties of green tea catechins incorporated into a hard low-fat cheese following in vitro simulated gastrointestinal digestion. Food and bioproducts processing, 100, 238-245. Ron-Doitch, S., Sawodny, B., Kühbacher, A., David, M. M. N., Samanta, A., Phopase, J., Burger-Kentischer, A., Griffith, M., Golomb, G., & Rupp, S. (2016). Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. Journal of Controlled Release, 229, 163-171. Sahoo, A., Swain, S. S., Behera, A., Sahoo, G., Mahapatra, P. K., & Panda, S. K. (2021). Antimicrobial peptides derived from insects offer a novel therapeutic option to combat biofilm: A review. Frontiers in Microbiology, 10, 661195. Sato, H., & Feix, J. B. (2006). Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochimica et Biophysica Acta, 1758, 1245-1256. Simons, A., Alhanout, K., & Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8, 639. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in biotechnology, 27, 82-89. Storici, P., & Zanetti, M. (1993). A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39. Biochemical and biophysical research communications, 196, 1058-1065. Sulis, G., Sayood, S., Katukoori, S., Bollam, N., George, I., Yaeger, L. H., Chavez, M. A., Tetteh, E., Yarrabelli, S., Pulcini, C., & Harbarth, S. (2022). Exposure to WHO AWaRe antibiotics and isolation of multi-drug resistant bacteria: a systematic review and meta-analysis. Clinical Microbiology and Infection, 28, 153-157. Szymczak, P., Mozejko, M., Grzegorzek, T., Jurczak, R., Bauer, M., Neubauer, D., Sikora, K., Michalski, M., Sroka, J., Setny, P. Kamysz, W., Szczurek, E. (2023). Discovering highly potent antimicrobial peptides with deep generative model HydrAMP. Nature Communications, 14, 1453. Tam, J. P., Wang, S., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceuticals, 8, 711-757. Taylor, T. M., Bruce, B. D., Weiss, J., & Davidson, P. M. (2008). Listeria monocytogenes and Escherichia coli O157:H7 inhibition in vitro by liposome-encapsulated nisin and ethylene diaminetetraacetic acid. Journal of Food Safety, 28, 183e197. Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005a). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45, 587e605. Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005b). Ultrasonic spectroscopy and differential scanning calorimetry of liposomal-encapsulated nisin. Journal of Agricultural and Food Chemistry, 53, 8722e8728. Taylor, T. M., Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2007). Characterization of antimicrobial-bearing liposomes by z-potential, vesicle size, and encapsulation efficiency. Food Biophysics, 2, 1-9. Teixeira, M. L., Santos, J., Silveira, N. P., & Brandelli, A. (2008). Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria Monocytogenes. Innovative Food Science and Emerging Technologies, 9, 49e53. Were, L. M., Bruce, B. D., Davidson, M., & Weiss, J. (2003). Size, stability, and entrapment efficiency of phospholipids nanocapsules containing polypeptide antimicrobials. Journal of Agricultural and Food Chemistry, 51, 8073e8079. Wu, M., Ma, Y., Dou, X., Aslam, M. Z., Liu, Y., Xia, X., Yang, S., Wang, X., Qin, X., Hirata, T., & Dong, Q. (2022). A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Research International, 164, 112363. Zhao, C., Nguyen, T., Boo, L. M., Hong, T., Espiritu, C., Orlov, D., Wang, W., Waring, A., & Lehrer, R. I. (2001). RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrobial Agents and Chemotherapy, 45, 2695-2702.
| ||
آمار تعداد مشاهده مقاله: 461 تعداد دریافت فایل اصل مقاله: 121 |