
تعداد نشریات | 25 |
تعداد شمارهها | 960 |
تعداد مقالات | 7,934 |
تعداد مشاهده مقاله | 13,423,360 |
تعداد دریافت فایل اصل مقاله | 9,541,544 |
بررسی تیمار سدیمنیتروپروساید بر بیان برخی از ژنهای دفاعی و پاسخهای فیزیولوژیکی در کدوی آلوده به ویروس موزائیک خیار | ||
زیست شناسی کاربردی | ||
مقاله 8، دوره 37، شماره 1 - شماره پیاپی 79، خرداد 1403، صفحه 102-116 اصل مقاله (1009.97 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.43373.1560 | ||
نویسندگان | ||
مهرداد صالح زاده1؛ سعیده دهقانپورفراشاه* 2؛ محمد باقر حسنپور اقدم3 | ||
1دانشجو دکتری بیماریشناسی گیاهی، دانشکدهی کشاورزی، دانشگاه شیراز، شیراز، ایران | ||
2استادیار گروه کشاورزی دانشگاه پیام نور، تهران، ایران | ||
3دانشیار، گروه علوم و مهندسی باغبانی، دانشکدهی کشاورزی، دانشگاه مراغه، مراغه، ایران. | ||
چکیده | ||
مقدمه ویروس موزائیک خیار با عامل (CMV)Cucumber mosaic virus از بیماریهای مهم خیار و بسیاری از محصولات دیگر بهشمار میرود که در سراسر جهان ازجمله ایران سالانه میزان زیادی خسارت وارد میکند. در سالهای اخیر کاربرد القاءکنندههای دفاعی بسیار مورد توجه قرار گرفته است. لذا در پژوهش حاضر بهمنظور بررسی نقش سدیمنیتروپروساید (SNP) بهعنوان یک محرک زیستی ترکیبات دفاعی، کدو بهعنوان یک رقم حساس به ویروس موزائیک خیار انتخاب شد. مواد و روشها گیاهان در مرحله دوبرگی کامل بهوسیله CMV با غلظت 50 میکروگرم بر میلیلیتر مایهزنی و سپس 48 ساعت بعد گیاهان آلوده به CMV با SNP در سه غلظت 100، 200 و 300 میکروگرم در میلیلیتر اسپری شدند. درنهایت میزان بیان ژن پروتئین پوششی و رپلیکاز ویروس، الگوی تظاهر ژنهای دفاعی PAL، GPX1، LOX1، Pr1 و Pr3 و برخی ویژگیهای فیزیولوژیکی کدو در سه تکرار از هفتهی اول تا سوم مورد ارزیابی قرار گرفت. نتایج و بحث نتایج نشان داد که در گیاهان تیمارشده با SNP روند تظاهر و بیان برخی از ژنهای دفاعی مورد بررسی پس از تیمار CMV افزایش یافت، بهطوریکه گیاهان آلوده به ویروس و سپس تیمارشده با SNP بهصورت وابستهبه غلظت اغلب تا هفتهی سوم نسبتبه گیاهان شاهد (تلقیحشده فقط با CMV) افزایش بیان نشان دادند و به حداکثر بیان خود رسیدند. علاوهبراین برخی ویژگیهای فیزیولوژیکی مورد مطالعه در کدوی آلوده به ویروس و تیمارشده با SNP نیز بهبود یافتند. لذا میتوان کاربرد SNP را بهخصوص در میزان القاء مقاومت سیستمیک در کدو علیه CMV موثر دانست. | ||
کلیدواژهها | ||
القاء کنندههای دفاعی؛ مقاومت؛ ویژگیهای فیزیولوژیکی | ||
عنوان مقاله [English] | ||
Sodium nitroprusside treatment affects the expression of some defense genes and physiological parameters in Cucurbita pepo infected with cucumber mosaic virus | ||
نویسندگان [English] | ||
mehrdad salehzadeh1؛ saeedeh dehghanpour farashah2؛ mohammad bagher hassanpouraghdam3 | ||
1PhD student in plant pathology, Faculty of Agriculture, Shiraz University, Shiraz, Iran | ||
2Assistant Professor, Department of Agriculture, Payam Noor University, Tehran, Iran | ||
3Associate Professor, Department of Horticultural Science and Engineering, Faculty of Agriculture, Maragheh University, Maragheh, Iran. | ||
چکیده [English] | ||
Introduction: Cucumber mosaic virus is a dominant disease in cucumber and many other crops, which causes a lot of damage worldwide and in Iran. In recent years, the use of defense inducers has received much attention. Methods: In the present study, we tried to investigate the defensive effects of sodium nitroprusside as a biological stimulus on Cucurbita pepo which is considered susceptible to Cucumber mosaic virus. The plants were incubated at the full two-leaf stage by CMV with a concentration of 50 micrograms/ml. After 48 hours, CMV-infected plants were sprayed with SNP in three concentrations of 100, 200 and 300 micrograms/ml. Finally, the level of expression of coat proteins and virus replicase genes, the expression pattern of PAL, GPX1, LOX1, Pr1 and Pr3 genes as well as some morpho-physiological characteristics of Cucurbita plants were evaluated in three repetitions during three weeks. Results and discussion: The results showed that the plants treated with SNP showed an increase in the expression of the studied genes after the infection by CMV. So that, the treated plants showed an increase in the genes expression pattern depending on the concentration of SNP till the third week compared to the control plants. In addition, several physiological characteristics were also improved. In conclusion, the use of SNP can be considered as an effective methodology in the induction of systemic resistance in Cucurbita pepo plants against CMV. | ||
کلیدواژهها [English] | ||
Defense genes inducers, Resistance, Physiological characteristics | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P. and Tiburcio, A.F. (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231: 1237-1249. Arasimowicz-Jelonek, M. and Floryszak-Wieczorek, J. (2016) Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Frontiers in Plant Science, 7: 252. Bates, L. S., Waldren, R. A. and Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant and soil, 39: 205-207. Cao, N., Zhan, B. and Zhou, X. (2019) Nitric oxide as a downstream signaling molecule in brassinosteroid-mediated virus susceptibility to maize chlorotic mottle virus in maize. Viruses, 11(4): 368. Chance, B. and Maehly, A. C. (1955) Assay of catalases and peroxidases. 764-775. Dehghanpour-Farashah, S., Taheri, P. and Falahati-Rastegar, M. (2019) Effect of polyamines and nitric oxide in Piriformospora indica-induced resistance and basal immunity of wheat against Fusarium pseudograminearum. Biological Control, 136: 104006. Fardhani, D.M., Kharisma, A.D., Kobayashi, T., Arofatullah, N.A., Yamada, M., Tanabata, S., Yokoda, Y., Widiastuti, A. and Sato, T. (2022) Ultraviolet-b irradiation induces resistance against powdery mildew in cucumber (Cucumis sativus L.) through a different mechanism than that of heat shock-induced resistance. Agronomy, 12(12): 3011. Gill, S.S., Hasanuzzaman, M., Nahar, K., Macovei, A. and Tuteja, N. (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiology and Biochemistry, 63: 254-261. Hayat, S., Mori, M., Pichtel, J. and Ahmad, A. (2009) Nitric oxide in plant physiology. Wiley-Blackwell, India, 210p. Hu, M., Zhu, Y., Liu, G., Gao, Z., Li, M., Su, Z. and Zhang, Z. (2019) Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Scientia Horticulturae, 245: 224-230. Irigoyen, J. J., Einerich, D. W. and Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum, 84(1): 55-60. Lai, T., Chen, Y., Li, B., Qin, G. and Tian, S. (2014) Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis. Journal of Proteomics, 103: 47-56. Lazalt, A.M., Beligni, M.V. and Lamattina, L. (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. European Journal of Plant Pathology, 103: 643-651. Leonetti, P., Melillo, M.T. and Bleve-Zacheo, T. (2011) Nitric oxide and hydrogen peroxide: two players in the defence response of tomato plants to root-knot nematodes. Communications in agricultural and applied biological sciences, 76(3): 371-381. Liao, Y.W., Sun, Z.H., Zhou, Y.H., Shi, K., Li, X., Zhang, G.Q., Xia, X.J., Chen, Z.X. and Yu, J.Q. (2013) The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the basal defense against Tobacco mosaic virus. PLoS One, 8(9): e76090. Lichtenthaler, H.K. and Wellburn, A.R. (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 591-592. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4):402-408. Lu, R., Liu, Z., Shao, Y., Su, J., Li, X., Sun, F., Zhang, Y., Li, S., Zhang, Y., Cui, J. and Zhou, Y. (2020) Nitric oxide enhances rice resistance to rice black-streaked dwarf virus infection. Rice, 13(1): 1-3. Mur, L.A., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J., Hebelstrup, K.H. and Gupta, K.J. (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5. Noritake, T., Kawakita, K. and Doke, N. (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant and Cell Physiology, 37(1): 113-116. Pu, X., Xie, B., Li, P., Mao, Z., Ling, J., Shen, H., Zhang, J., Huang, N. and Lin, B. (2014) Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiology Letters, 355(2):142-151. Salehzadeh, M. (2018). Survey on presence of Cucumber mosaic virus (CMV) in single and mixed infections with potyviruses in North-West of Iran. Genetic Engineering and Biosafety Journal, 7(2): 163-173. Sarkar, T.S., Majumdar, U., Roy, A., Maiti, D., Goswamy, A.M., Bhattacharjee, A., Ghosh, S. and Ghosh, S.K. (2010) Production of nitric oxide in host-virus interaction: A case study with a compatible begomovirus-kenaf host-pathosystem. Plant Signaling and Behavior, 5(6): 668-676. Sofy, A.R., Dawoud, R.A., Sofy, M.R., Mohamed, H.I., Hmed, A.A. and El-Dougdoug, N.K. (2020) Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules, 25(10): 2341. Sriram, S., Raguchander, T., Vidhyasekaran, P., Muthukrishnan, S. and Samiyappan R. (1997) Genetic relatedness with special reference to virulence among the isolates of Rhizoctonia solani causing sheath blight in rice. Journal of Plant Diseases and Protection, 104: 260 –271. Sudhakar, N., Nagendra –Prasad, D., Mohan, N. and Murugesan K. (2006) Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against Cucumber mosaic virus by using ozone. Journal of Virological Methods, 139(1): 71 -77. Wei, T., Lebas, B.S.M., Shiller, J.B., Quinn, B.D. and Clover, G.R.G. (2012) Detection of five viruses infecting dormant bulbs by TaqMan-based real-time RT-PCR. Australasian Plant Pathology, 41(1): 93-98. Yu, Z., Cao, J., Zhu, S., Zhang, L., Peng, Y. and Shi, J. (2020) Exogenous nitric oxide enhances disease resistance by nitrosylation and inhibition of S-nitrosoglutathione reductase in peach fruit. Frontiers in Plant Science, 11: 543. Zheng, Y., Sheng, J., Zhao, R., Zhang, J., Lv, S., Liu, L. and Shen, L. (2011) Preharvest L-arginine treatment induced postharvest disease resistance to Botrysis cinerea in tomato fruits. Journal of Agricultural and Food Chemistry, 59(12): 6543-6549. Zhou, J., Jia, F., Shao, S., Zhang, H., Li, G., Xia, X., Zhou, Y., Yu, J. and Shi, K. (2015) Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Frontiers in Plant Science, 6: 193. | ||
آمار تعداد مشاهده مقاله: 220 تعداد دریافت فایل اصل مقاله: 117 |