تعداد نشریات | 25 |
تعداد شمارهها | 915 |
تعداد مقالات | 7,521 |
تعداد مشاهده مقاله | 12,223,327 |
تعداد دریافت فایل اصل مقاله | 8,644,626 |
مقالۀ پژوهشی: تقویت کننده خطی بدون نوفه مبتنی بر قیچی کوانتومی سه-فوتون با مانستگی بالا | ||
فیزیک کاربردی ایران | ||
دوره 14، شماره 2 - شماره پیاپی 37، تیر 1403، صفحه 99-114 اصل مقاله (2.15 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2024.45084.1353 | ||
نویسندگان | ||
خاطره جعفری1؛ مجتبی گلشنی* 2؛ علیرضا بهرامپور3 | ||
1دانشجوی دکتری، دانشکدۀ فیزیک، دانشگاه صنعتی شریف، تهران، ایران | ||
2استادیار، دانشکدۀ فیزیک، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
3دانشکده فیزیک، دانشگاه صنعتی شریف، تهران، ایران | ||
چکیده | ||
در این مقاله، یک قیچی کوانتومی سه- فوتون، که فضای هیلبرت بینهایت بعدی را به فضای حالتهای عددی با تعداد کمتر از چهار فوتون کاهش میدهد، و دامنه حالات عددی باقیمانده را به روش احتمالی تقویت میکند، پیشنهاد شده است. بدینمنظور، با فرض ایدهآل بودن باریکه شکافها و آشکارسازهای مورد استفاده در طرح پیشنهادی، حالت خروجی این قیچی کوانتومی و احتمال موفقیت مربوط به آن به صورت تحلیلی محاسبه شده است. این تقویت کننده، برخلاف قیچی کوانتومی تک- فوتون یا دو- فوتون، برای هر برهم نهی تا بیشینه سه فوتون عمل تقویت را به صورت ایدهآل انجام میدهد. نتایج بدست آمده برای حالت ورودی همدوس نشان میدهد که مانستگی بین حالت ایدهآل و حالت تقویت شده بدست آمده با استفاده از این قیچی کوانتونی پیشنهادی، به بزرگی مانستگی یک تقویتکننده مبتنی بر مجموعه شش عددی قیچی کوانتومی تک- فوتون، و یا یک تقویتکننده مبتنی بر مجموعه دو عددی قیچی کوانتومی دو- فوتون است. افزون بر این، احتمال موفقیت این قیچی کوانتومی تعمیمیافته بزرگتر از احتمال موفقیت بدست آمده از شش تقویت کننده یک- فوتون، و قابل مقایسه با احتمال موفقیت دو تقویتکننده دو- فوتون است. از اینرو، با توجه به اینکه تجهیزات مورد نیاز برای یک قیچی کوانتومی سه- فوتون کمتر از تجهزات مربوط به شبکهای از قیچیهای کوانتومی تک- فوتون یا دو- فوتون است، این ساختار معرفی شده کارامدتر از تقویتکننده مبتنی بر چند قیچی کوانتومی تک- فوتون و یا دو قیچی کوانتومی دو- فوتون است. | ||
کلیدواژهها | ||
تقویتکننده خطی بدون نوفه؛ قیچی کوانتومی سه-فوتون؛ مانستگی بالا | ||
عنوان مقاله [English] | ||
Research Paper: High Fidelity Noiseless Linear Amplifier Based on Three-Photon Quantum Scissor | ||
نویسندگان [English] | ||
Khatereh Jafari1؛ Mojtaba Golshani2؛ Alireza Bahrampour3 | ||
1PhD Student, Department of Physics, Sharif University of Technology, Tehran, Iran | ||
2Assistant Professor, Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Department of Physics, Sharif University of Technology, Tehran, Iran | ||
چکیده [English] | ||
In this article, we suggested a three-photon quantum scissor that truncates all multiphoton number states with four or more photons and amplifies the remaining photon number states in a probabilistic way. To this end, by assuming the ideality of all beam splitters and detectors of the proposed scheme, the output state of this quantum scissor and its success probability have been derived analytically. In contrast to the one-photon or two-photon quantum scissor, this setup works perfectly for superpositions of up to three photons. For the input coherent state, our results show that the fidelity between ideal amplification and the amplification obtained by this suggested three-photon quantum scissor is as good as that obtained with a network of six one-photon or two two-photon amplifiers. Moreover, the success probability of this generalized quantum scissor is larger than the success probability of six one-photon amplifiers and is comparable to the success probability of two two-photon amplifiers. Therefore, based on the fact that the resources required by the three-photon amplifier are smaller than those required for a network of one-photon or two-photon amplifiers, this proposed device is much more efficient than several one-photon or two two-photon amplifiers. | ||
کلیدواژهها [English] | ||
Noiseless Linear Amplifier, Three-Photon Quantum Scissor, High Fidelity | ||
مراجع | ||
[1] Zavatta A., Fiurášek J., and Bellini M., “A high-fidelity noiseless amplifier for quantum light states”, Nat. Photonics, 5, 52–56, 2011. https://doi.org/10.1038/nphoton.2010.260 [2] Ralph T. C. and Lund A., “Nondeterministic noiseless linear amplification of quantum systems”, AIP Conference Proceedings, 1110, 155–160, 2009. https://doi.org/10.1063/1.3131295 [3] Xiang G.-Y., Ralph T. C., Lund A. P., Walk N., and Pryde G. J., “Heralded noiseless linear amplification and distillation of entanglement”, Nat. Photonics, 4, 316–319, 2010. https://doi.org/10.1038/nphoton.2010.35 [4] Blandino R., Leverrier A., Barbieri M., Etesse J., Grangier P., and Tualle-Brouri R., “Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier”, Phys. Rev. A, 86, 012327, 2012. https://doi.org/10.1103/PhysRevA.86.012327 [5] Ghalaii M., Ottaviani C., Kumar R., Pirandola S., and Razavi M., “Discrete-modulation continuous-variable quantum key distribution enhanced by quantum scissors”, IEEE J. Sel. Areas Commun., 38, 506, 2020. https://doi.org/10.1109/JSAC.2020.2969058 [6] Jafari Kh., Golshani M., and Bahrampour A.R., “Discrete-modulation measurement-device-independent continuous-variable quantum key distribution with a quantum scissor: exact non-Gaussian calculation”, Optics Express, 30, 11400-11423, 2022. https://doi.org/10.1364/OE.452654 [7] Dias J. and Ralph T. C., “Quantum error correction of continuous-variable states with realistic resources”, Phys. Rev. A, 97, 032335, 2018. https://doi.org/10.1103/PhysRevA.97.032335 [8] Seshadreesan K. P., Krovi H., and Guha S., “Continuous-variable quantum repeater based on quantum scissors and mode multiplexing”, Phys. Rev. Research, 2, 013310, 2020. https://doi.org/10.1103/PhysRevResearch.2.013310 [9] Ralph T. C., “Quantum error correction of continuous variable states against Gaussian noise”, Phys. Rev. A, 84, 022339, 2011. https://doi.org/10.1103/PhysRevA.84.022339 [10] Leonski W. and Kowalewska-Kudłaszyk A., “Quantum scissors–finite- dimensional states engineering”, Progress in Optics, 56, 131–185, 2011. https://doi.org/10.1016/B978-0-444-53886-4.00003-4 [11] Pegg D. T., Phillips L. S., and Barnett S. M., “Optical state truncation by projection synthesis”, Phys. Rev. Let., 81, 1604, 1998. https://doi.org/10.1103/PhysRevLett.81.1604 [12] Jeffers J., “Nondeterministic amplifier for two-photon superpositions”, Phys. Rev. A, 82, 063828, 2010. https://doi.org/10.1103/PhysRevA.82.063828 [13] Gerry C. and Knight P. L., Introductory quantum optics, Cambridge university press, New York, 2005. [14] Koniorczyk M., Kurucz Z., Gábris A., and Janszky J., “General optical state truncation and its teleportation”, Phys. Rev. A, 62, 013802, 2000. https://doi.org/10.1103/PhysRevA.62.013802 [15] Villas-Boas C., Guimaraes Y., Moussa M., and Baseia B., “Recurrence formula for generalized optical state truncation by projection synthesis”, Phys. Rev. A, 63, 055801, 2001. https://doi.org/10.1103/PhysRevA.63.055801 [16] Miranowicz A., “Optical-state truncation and teleportation of qudits by conditional eight-port interferometry”, J. Opt. B: Quantum Semiclassical Opt., 7, 142, 2005. https://doi.org/10.1088/1464-4266/7/5/004 [17] Eisert J., “Optimizing linear optics quantum gates”, Phys. Rev. Let., 95, 040502 ,2005. https://doi.org/10.1103/PhysRevLett.95.040502 [18] Arfken G. B., Weber H. J., and Harris F. E., “Mathematical methods for physicists: a comprehensive guide”, Academic press, 2011. | ||
آمار تعداد مشاهده مقاله: 421 تعداد دریافت فایل اصل مقاله: 362 |