تعداد نشریات | 25 |
تعداد شمارهها | 910 |
تعداد مقالات | 7,488 |
تعداد مشاهده مقاله | 12,097,599 |
تعداد دریافت فایل اصل مقاله | 8,560,425 |
بهینهسازی فرایند جذب زیستی اورانیوم توسط زیست توده اتوکلاو شده باکتری میکروکوکوس لوتئوس با استفاده از روش سطح پاسخ | ||
زیست شناسی کاربردی | ||
مقاله 1، دوره 36، شماره 2 - شماره پیاپی 76، شهریور 1402، صفحه 7-21 اصل مقاله (936.62 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.43178.1553 | ||
نویسندگان | ||
پریسا تاجر محمد قزوینی1؛ زهرا شیری یکتا* 2؛ شقایق نصر3؛ نرگس اسلامی4؛ منصوره السادات حسینی5 | ||
1دانشیار، پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، تهران، ایران | ||
2استادیار، پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، تهران، ایران | ||
3استادیار، بانک میکروارگانیسمها، مرکز ملی ذخایر ژنتیکی و زیستی ایران، جهاد دانشگاهی، تهران، ایران | ||
4کارشناسی ارشد، گروه بیوتکنولوژی میکروبی، دانشکده علوم و فناوریهای نوین زیستی، دانشگاه علم و فرهنگ، تهران، ایران | ||
5کارشناسی ارشد، گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهراء(س)، ونک، تهران، ایران | ||
چکیده | ||
مقدمه: اورانیوم به عنوان یکی از فلزات سنگین، یک رادیونوکلئید طبیعی است که به دلیل سمیت جدی و خاصیت پرتوزایی دارای اثرات مخرب بر روی سلامت انسان و محیط زیست میباشد. جذب زیستی یک فناوری ساده و مقرون به صرفه است که میتواند برای حذف فلزات سنگین و رادیونوکلئیدها از پسابها به کار گرفته شود. مواد و روشها: در این پژوهش، زیست توده میکروکوکوس لوتئوس پیش تیمار شده با حرارت اتوکلاو استفاده گردید. سپس پارامترهای فیزیکوشیمیایی موثر بر جذب زیستی اورانیوم شامل دما، pH، غلظت اولیه اورانیوم و غلظت جاذب با استفاده از روش سطح پاسخ بررسی شدند. نتایج: نتایج نشان داد که پارامترهای غلظت اولیه اورانیوم، مقدار جاذب و pH از لحاظ آماری (05/0>p-value ) بر روی فرآیند جذب زیستی اورانیوم تأثیرگذار هستند. در مقابل، پارامتر دما از لحاظ آماری (05/0>p-value) بر روی فرآیند حذف اورانیوم توسط باکتری میکروکوکوس لوتئوس بدون تأثیر میباشد. بحث و نتیجهگیری: نتایج مشخص کردند که زیست توده پیش تیمار شده در شرایط پیشنهاد شده توسط نرمافزار دیزاین اکسپرت (75/19 گرم بر لیتر زیست توده، دمای °C 14/32 و 33/3pH ) قادر به حذف تقریباً 98/99 درصد اورانیوم از محیط آلوده به 11/26 میلی گرم بر لیتر اورانیوم می باشد که نشان دهنده پتانسیل ارزشمند آن در کاربردهای زیست پالایی اورانیوم از پسابهای اسیدی آلوده با غلظت های پایین اورانیوم میباشد. | ||
کلیدواژهها | ||
اورانیوم؛ جاذب زیستی؛ طراحی آزمایش؛ رادیونوکلئید؛ زیست پالایی | ||
عنوان مقاله [English] | ||
Optimization of uranium biosorption process by autoclaved Micrococcus Luteus biomass using response surface methodology | ||
نویسندگان [English] | ||
Parisa Tajer Mohammad Ghazvini1؛ Zahra Shiri-Yekta2؛ shaghayegh nasr3؛ Narges Eslami4؛ ,Mansoure Hosseini5 | ||
1. Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran | ||
2Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran | ||
3Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran. | ||
4. Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran | ||
5Department of Microbiology, Faculty of Biological Science, Alzahra University, Tehran, Iran | ||
چکیده [English] | ||
Introduction: Uranium, as one of the heavy metals, is a natural radionuclide that has harmful effects on human health and the environment due to its serious toxicity and radiation properties. Biosorption is a simple and cost-effective technique that can be used for remove of heavy metals and Radionuclides from waste waters. Material and methods: In this study, Micrococcus luteus biomass pretreated with autoclave heat was used. Then, physicochemical factor affecting the biosorption including biosorbent dose, initial uranium concentration, temperature and pH were investigated by Response Surface Methodology. Results: The results showed that the factor of initial uranium concentration, sorbent dose and pH statistically (p-value‹ 0.05) affect the uranium biosorption process. In contrast, temperature factor (p-value› 0.05) statistically have no effect on uranium removal by M. luteus. Discussion and conclusion: The results indicated that the pre-treated biomass under the conditions suggested by Design Expert software (19.75 g/liter of biomass, temperature 32.14 OC and pH 3.33) is able to remove approximately 99.98 percent of uranium from the contaminated area is 26.11 mg/liter of uranium, which shows its valuable potential in bioremediation applications of uranium from acidic wastewaters contaminated with low concentrations of uranium. | ||
کلیدواژهها [English] | ||
Uranium, Biosorbent, Design–Expert, Radionuclide, Bioremediation | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Ahalya, N. Ramachandra, T.V. and Kanamadi, R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment 7: 71-79 Ahmad, A. Bhat, A.H. and Buang, A. (2018). Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. Journal of Cleaner Production 171: 1361-1375 Ayangbenro, A.S. and Babalola, O.O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research public health 14: 94 Bayramoǧlu, G. Tuzun, I. Celik, G. Yilmaz, M. and Arica, M.Y. (2006). Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing 81: 35-43 Cheah, C., Cheow, Y. L., & Ting, A. S. Y. (2023). Pre-Treatment of Exopolymeric Substances from Bacillus cereus for Metal Removal as a Novel Strategy to Enhance Metal Biosorption. Water, Air, and Soil Pollution, 234(2). doi:10.1007/s11270-023-06150-w Dong, Y., Chong, S., & Lin, H. (2023). Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus. International Journal of Minerals, Metallurgy and Materials, 30(2), 283-292. doi:10.1007/s12613-021-2344-9 Embaby, M.A. Haggag, E.S.A. El-Sheikh, A.S. and Marrez, D.A. (2022). Biosorption of Uranium from aqueous solution by green microalga Chlorella sorokiniana. Environmental Science and Pollution Research 29: 58388-58404 Farhan, S.N. and Khadom, A.A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. International journal of industrial chemistry 6: 119-130 Hadiani, M.R. Khosravi-Darani, K. and Rahimifard, N. (2019). Optimization of As (III) and As (V) removal by Saccharomyces cerevisiae biomass for biosorption of critical levels in the food and water resources. Journal of Environmental Chemical Engineering 7: 9 Idris, A. Ismail, N.S.M. Hassan, N. Misran, E. and Ngomsik, A.F. (2012). Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. Journal of Industrial and Engineering Chemistry 18: 1582-1589 Javanbakht, V. Alavi, S.A. and Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science Technology 69: 1775-1787 Kasra-Kermanshahi, R. Bahrami-Bavani, M. and Tajer-Mohammad-Ghazvini, P. (2019). Microbial clean-up of uranium in the presence of molybdenum using pretreated Acidithiobacillus ferrooxidans. Journal of Radioanalytical and Nuclear Chemistry 322: 1139-1149 Khani, M.H. Keshtkar, A.R. Meysami, B. Zarea, M.F. and Jalali, R. (2006). Biosorption of uranium from aqueous solutions by nonliving biomass of marinealgae Cystoseira indica. Electronic Journal of Biotechnology 9: 100-106 Li, X. Ding, C. Liao, J. Lan, T. Li, F. Zhang, D. Yang, J. Yang, Y. Luo, S. Tang, J. and Liu, N. (2014). Biosorption of uranium on Bacillus sp. dwc-2: Preliminary investigation on mechanism. Journal of Environmental Radioactivity 135: 6-12 Liu, H.-L. Chen, B.-Y. Lan, Y.-W. and Cheng, Y.-C. (2004). Biosorption of Zn (II) and Cu (II) by the indigenous Thiobacillus thiooxidans. Chemical Engineering Journal 97: 195-201 Long, J., Gao, X., Su, M., Li, H., Chen, D., & Zhou, S. (2018). Performance and mechanism of biosorption of nickel(II) from aqueous solution by non-living Streptomyces roseorubens SY. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548, 125-133. doi:10.1016/j.colsurfa.2018.03.040 Mathivanan, K., Uthaya Chandirika, J., Srinivasan, R., Emmanuel Charles, P., Rajaram, R., & Zhang, R. (2023). Exopolymeric substances production by Bacillus cereus KMS3-1 enhanced its biosorption efficiency in removing Cd2+ and Pb2+ in single and binary metal mixtures. Environmental Research, 228. doi:10.1016/j.envres.2023.115917 Mustafa, J. Kausar, A. Bhatti, H.N. and Ilyas, S. (2016). Sequestering of uranium (VI) onto eucalyptus bark: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment 57: 14578-14589 Nakajima, A., & Tsuruta, T. (2004). Competitive biosorption of thorium and uranium by Micrococcus luteus. Journal of Radioanalytical and Nuclear Chemistry, 260(1), 13-18. doi:10.1023/B:JRNC.0000027055.16768.1e Pang, C. Liu, Y.H. Cao, X.H. Li, M. Huang, G.L. Hua, R. Wang, C.X. Liu, Y.T. and An, X.F. (2011). Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chemical Engineering Journal 170: 1-6 Roșca, M., Silva, B., Tavares, T., & Gavrilescu, M. (2023). Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes, 11(1). doi:10.3390/pr11010179 Sana, S .Roostaazad, R. and Yaghmaei, S. (2015). Biosorption of uranium (VI) from aqueous solution by pretreated Aspergillus niger using sodium hydroxide. Iranian journal of chemistry chemical engineering 34: 65-74 Sedlakova-Kadukova, J., Kopcakova, A., Gresakova, L., Godany, A., & Pristas, P. (2019). Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicology and Environmental Safety, 167, 204-211. doi:10.1016/j.ecoenv.2018.09.123 Shroff, K.A. and Vaidya, V.K. (2011). Effect of pre‐treatments on biosorption of Ni (II) by dead biomass of Mucor hiemalis. Iranian journal of chemistry chemical engineering 11: 588-597 Sun, F. Wu, F. Liao, H. and Xing, B. (2011). Biosorption of antimony(V) by freshwater cyanobacteria Microcystis biomass: Chemical modification and biosorption mechanisms. Chemical Engineering Journal 171: 1082-1090 Vijayaraghavan, K. Won, S.W. Mao, J. and Yun, Y.S. (2008). Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chemical Engineering Journal 145: 1-6 Vijayaraghavan, K. and Yun, Y.S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances 26: 266-291 Volesky, B. (1987). Biosorbents for metal recovery. Trends in Biotechnology 5: 96-101 Wang, J. and Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances 24: 427-451 Yi, Z.-J. and Yao, J. (2012). Kinetic and equilibrium study of uranium (VI) adsorption by Bacillus licheniformis. Journal of Radioanalytical Nuclear Chemistry 293: 907-914 Yi, Z. and Lian, B. (2012). Adsorption of U (VI) by Bacillus mucilaginosus. Journal of Radioanalytical Nuclear Chemistry 293: 321-329 Yi, Z.J. Yao, J. Zhu, M.J. Chen, H.L. Wang, F. and Liu, X. (2017). Biosorption characteristics of Ceratophyllum demersum biomass for removal of uranium(VI) from an aqueous solution. Journal of Radioanalytical and Nuclear Chemistry 313: 19-27 Yi, Z.J. Yao, J. Zhu, M.J. Chen, H.L. Wang, F. Yuan, Z.M. and Liu, X. (2016). Batch study of uranium biosorption by Elodea canadensis biomass. Journal of Radioanalytical and Nuclear Chemistry 310: 505-513 Ziouane, A., Iddou, A., Aguedal, H., & Aziz, A. (2019) Biosorption of Lead(II) from Aqueous Solution by Raw and Treated Streptomyces rimosus: Equilibrium, kinetic and thermodynamic studies. In: Vol. 800 KEM. 59th International Scientific Conference of Riga Technical University (RTU) Section of Materials Science and Applied Chemistry, MSAC 2018 (pp. 145-150): Trans Tech Publications Ltd. | ||
آمار تعداد مشاهده مقاله: 200 تعداد دریافت فایل اصل مقاله: 63 |