تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,494,447 |
تعداد دریافت فایل اصل مقاله | 8,885,813 |
عدم توازن سفارشات و نوسانات واقعی شده قیمت سهام در بورس اوراق بهادار تهران و فرابورس ایران | ||
راهبرد مدیریت مالی | ||
مقاله 2، دوره 11، شماره 3 - شماره پیاپی 42، مهر 1402، صفحه 29-50 اصل مقاله (462.72 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2023.40457.2692 | ||
نویسندگان | ||
غزاله هاشمی* 1؛ رضا عیوضلو2 | ||
1دانشجو دکترا مدیریت مالی، دانشگاه تهران | ||
2استادیار گروه مدیریت مالی و بیمه، دانشکده مدیریت دانشگاه تهران | ||
چکیده | ||
هدف از پژوهش حاضر بررسی رابطه بین عدمتوازن در دفتر سفارشات سهام با نوسانات قیمت است. عدمتوازن به اختلاف بین تعداد سفارشات خرید و تعداد سفارشات فروش یا اختلاف بین حجم سفارشات خرید و حجم سفارشات فروش اشاره دارد. برای محاسبه نوسانات قیمت از نوسانات واقعیشده در بازههای زمانی 5 و 10 دقیقهای برای دوره 3 ساله 1397 تا 1399 استفاده میشود. دادههای پژوهش از دادههای میانروزی دفتر سفارشات سهام شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران و فرابورس ایران استخراج شده است. همچنین، به منظور بررسی روابط بین متغیرهای پژوهش از مدل رگرسیون دادههای پنل استفاده شده است. نتایج پژوهش نشان میدهد بین اختلاف تعداد سفارشات و نوسانات واقعیشده قیمت سهامرابطه معنیداری وجود دارد. از سوی دیگر بین تعداد سفارشات فروش و نوسانات منفی واقعیشده ارتباط مثبت و معنیدار وجود دارد، همچنین، بین تعداد سفارشات خرید و نوسانات مثبت واقعیشده نیز ارتباط مثبت و معنیداری مشاهده میشود. لذا با بررسی وضعیت و تعداد سفارشات در دو سمت خرید و فروش و همچنین، بررسی اثرگذاری آن بر نوسانات قیمت سهام، میتوان با تصمیمگیری مناسب، سرمایهگذاری بهینهای انجام داد. | ||
کلیدواژهها | ||
نوسانات واقعیشده؛ عدم توازن سفارشات؛ تعداد سفارشات خرید؛ تعداد سفارشات فروش؛ دفتر سفارشات | ||
عنوان مقاله [English] | ||
Order Imbalance and Stock Price Realized Volatility in Tehran Stock Exchange and Iran Farabourse | ||
نویسندگان [English] | ||
Ghazaleh Hashemi1؛ Reza Eivazlou2 | ||
1Ph.D candidate in Finance, University of Tehran | ||
2Assistant Professor, University of Tehran, Finance and Insurance Department | ||
چکیده [English] | ||
Volatility in the financial markets is one of the most important variables in investment decisions, securities and derivatives pricing, risk management, regulation and monetary policy. In addition, the volatility of the financial markets plays an important role in the economy of the country through the creation or diminution of public confidence. This paper examines the relationship between order imbalance and stock price volatility. Order imbalance refer to difference between numbers of buy-sell orders as well as their volume. To measure this volatility, we extract 5-minute and 10-minute intraday data and calculate realized volatility using them. Our research sample was selected from listed companies in Tehran Stock Exchange and Iran Fara Bourse for the period 1397 to 1399. Panel regression is used to examine research model. Our findings show that there is significant relationship between order imbalance and realized volatility. In the other hand we find that the effect of number of buy/sell order on good/bad volatility is asymmetric. | ||
کلیدواژهها [English] | ||
Realized Volatility, Order Imbalance, Number of buy/sell order, OrderBook | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abbasi, E., Dehghan nayeri, L, Poordadash Mehrabani, N. (2016). Surveying the Relation among Volume, Stock Return and Return Volatility in the Tehran Stock Exchange: A Wavelet Analysis. Journal of Asset Management and Financing, 4(4), 99-114 (In persian)
Ahmadpour, A., Aghajani H., Fadavi, M. (2013). Stock Price Changes and Trading Volume in Companies Accepted at the Tehran Stock Exchange. Journal of Financial Management Strategy, 1(1),75-95. (in Persian)
Avramov, D., Chordia, T., & Goyal, A. (2006). The impact of trades on daily volatility. The Review of Financial Studies, 19(4), 1241-1277.
Bissoondoyal-Bheenick, E., Brooks, R., & Do, H. X. (2019). Asymmetric relationship between order imbalance and realized volatility: Evidence from the Australian market. International Review of Economics & Finance, 62(1), 309-320.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
Bouri, E., Lucey, B., Saeed, T. & Vo, X. V. (2021). The realized volatility of commodity futures: Interconnectedness and determinants. International Review of Economics & Finance, 73(c), 139-151.
Chan, K., & Fong, W. M. (2000). Trade size, order imbalance, and the volatility–volume relation. Journal of Financial Economics, 57(2), 247-273.
Chordia, T., Goyal, A., & Jegadeesh, N. (2016). Buyers versus Sellers: Who Initiates Trades, and When? Journal of Financial and Quantitative Analysis, 51(5) ,1467-1490.
Darrat, A. F., Rahman, S., & Zhong, M. (2003). Intraday trading volume and return volatility of the DJIA stocks: A note. Journal of Banking & Finance, 27(10), 2035-2043.
Day, T. E., & Lewis, C. M. (1992). Stock market volatility and the information content of stock index options. Journal of Econometrics, 52(1-2), 267-287.
Degiannakis, S., & Floros, C. (2016). Intra-day realized volatility for European and USA stock indices. Global Finance Journal, 29(3), 24-41.
Duong, H. N., & Kalev, P. S. (2014). Individual investors’ trading activities and price volatility. In Market Microstructure and Nonlinear Dynamics,6(2), 155-188.
Ederington, L. H., & Guan, W. (2010). The bias in time series volatility forecasts. Journal of Futures Markets, 30(4), 305-323.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50(4), 987-1007.
Hamidah, S., Pahlevi, C., Aswan, A. (2022). The effect of trading volume, trading frequency, and order imbalance on the stock price volatility of LQ45 company in 2017-2019. Hasanuddin Journal of Applied Business and Entrepreneurship (HJABE), 5(2), 2598-0890
Liu, W., & Morley, B. (2009). Volatility forecasting in the hang seng index using the GARCH approach. Asia-Pacific Financial Markets, 16(1), 51-63.
Rossi, M. (2014). Realized volatility, liquidity, and corporate yield spreads. The Quarterly Journal of Finance, 4(01), 1450004.
Mohammadi, sh., Raei, R., Tehrani, R. (2009). Modeling Volatility: Evidence from Tehran Stock Exchange. Financial Research Journal, 11(27), 97-110. (in Persian)
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579-625.
Rastinfar, A., Hematfar, M., (2020). Modeling and predicting stock market volatility using neural network and conditional variance patterns. Financial engineering and portfolio management. 11(43), 451-473. (in Persian)
Shahverdiani, Sh., Khajezade, S., (2018) Analyzing fluctuations of stock prices of the companies listed in Tehran Stock Exchange Using the machine learning method. Journal of Financial Management Strategy, 6(1), 69-91. (in Persian)
Shahzad, H., Duong, H. N., Kalev, P. S., & Singh, H. (2014). Trading volume, realized volatility and jumps in the Australian stock market. Journal of International Financial Markets, Institutions and Money, 31(4), 414-430.
Tehrani, R., Mohammadi, sh., Porebrahimi, M., (2010). Modeling and forecasting the volatility of Tehran Exchange Dividend Price Index (TEDPIX). Financial Research Journal, 11(43), 23-36. (in Persian) | ||
آمار تعداد مشاهده مقاله: 430 تعداد دریافت فایل اصل مقاله: 186 |