تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,713 |
تعداد مشاهده مقاله | 12,656,819 |
تعداد دریافت فایل اصل مقاله | 9,013,735 |
مقایسهی دقت مدلهای آماری و یادگیری ماشین برای پیشبینی نگهداشت وجه نقد و ارائه مدل بهینه | ||
راهبرد مدیریت مالی | ||
مقاله 1، دوره 11، شماره 3 - شماره پیاپی 42، مهر 1402، صفحه 1-28 اصل مقاله (478.32 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2023.42943.2789 | ||
نویسندگان | ||
سجاد میرزایی؛ مهدی محمدی؛ غلامرضا منصور فر* | ||
گروه حسابداری و مدیریت مالی، دانشکده اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
پژوهش حاضر، مقایسه دقت مدلهای یادگیری ماشین و آماری در پیشبینی نگهداشت وجه نقد را با استفاده از مجموعه متغیرهای مالی و اقتصادی مورد بررسی قرار داده است. روششناسی پژوهش را میتوان به سه مرحله گزینش مجموعه داده و متغیرها، مدلسازی و قیاس تقسیمبندی کرد. نمونهآماری پژوهش حاضر بورس اوراق بهادار تهران است که دادههای 173 شرکت در طی بازه زمانی 1400-1389 مورد بررسی قرارگرفته است. نتایج حاکی از دقت بالای مدل رگرسیون نمادین با استفاده از الگوریتم ژنتیک با ضریب دقت 71 درصد در این زمینه است. بعدازآن به ترتیب مدلهای تقویت گرادیان درختی، رگرسیون مارس، شبکه عصبی و تقویت گرادیان فوقالعاده بهعنوان دقیقترین مدلها جهت پیشبینی ارزیابی شدند. درنهایت مدل K نزدیکترین همسایه ضعیفترین دقت پیشبینی را از خود نشان داد. همچنین اگرچه مدلهای آماری دقت پیشبینی پایینی را نشان دادند اما بااینحال از برخی مدلهای یادگیری ماشین ضریب دقت بالاتری را کسب کردند. همچنین نتایج نشان داد استفاده از رگرسیون لاسو موجب بهبود دقت مدلهای آماری و برخی از مدلهای یادگیری ماشین میگردد. این پژوهش میتواند زوایای جدیدی از تکنیکهای پیشبینی نگهداشت وجه نقد را در مطالعات مالی بیفزاید؛که تاکنون در ادبیات مالی مورد بررسی قرار نگرفته است. | ||
کلیدواژهها | ||
رگرسیون لاسو؛ پیشبینی نگهداشت وجه نقد؛ یادگیری ماشین | ||
عنوان مقاله [English] | ||
Comparison of Statistical and Machine Models for Predicting Cash Holdings and Providing the Optimal Model | ||
نویسندگان [English] | ||
Sajjad Mirzaei؛ Mehdi Mohammadi؛ Gholamreza Mansourfar | ||
Accounting and Finance Dept., Faculty of Economics and Management, Urmia University, Urmia, Iran. | ||
چکیده [English] | ||
The current paper has investigated the comparison of the accuracy of machine learning and statistical models in predicting cash holdings using a set of financial and economic variables. Research methodology can be divided into three stages: selection of data set and variables, modeling and estimation. The statistical sample of the current research is the Tehran Stock Exchange, where the data of 173 companies have been analyzed during the period of 2010-2021. The results indicate the high accuracy of the symbolic regression model using the genetic algorithm with an accuracy factor of 71% in this field. After that, Gradient Boosted Trees, MARS regression, neural network and XGboost models were evaluated as the most accurate models for prediction. Finally, the KNN model showed the weakest prediction accuracy. Also, although the statistical models showed low prediction accuracy, they obtained a higher accuracy coefficient from some machine learning models. Also, the results showed that the use of Lasso regression improves the accuracy of statistical models and some machine learning models. This research can add new angles of cash retention forecasting techniques in financial studies, which have not been investigated in financial literature so far. | ||
کلیدواژهها [English] | ||
Lasso Regression, Machine Learning, Predict Cash Holdings | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Acharya, V. V., Almeida, H., & Campello, M. (2007). Is cash negative debt? A hedging perspective on corporate financial policies. Journal of financial intermediation, 16(4), 515-554.
Aflatooni, Abbas, Kazemi, Periyosh, Khatiri, Mohammad. (2022). Comparing the Cash Holdings Speed of Adjustment During Economic Prosperities and Recessions. Financial Management Strategy, 10(3), 141-160. (In Persian).
Anand, V., Brunner, R., Ikegwu, K., & Sougiannis, T. (2019). Predicting profitability using machine learning. Available at SSRN 3466478.
Angelovska M, Valentinčič A (2019) Determinants of cash holdings in private firms: the case of the Slovenian SMEs. Econ Bus Rev 22(1):5–36.
Asgharpour,Hossein,Rezaei, Sadegh, Hamidi Rozi, Daud, Heydari, Mansour. (2022). Investigating the Interaction Effects of Exchange Rate Regimes and Inflation on Iran's Economic Growth. Business Journal, 26(104), 47-74. (In Persian).
Attewell, P., & Monaghan, D. (2015). Data mining for the social sciences: An introduction. Univ of California Press.
Ball, R., & Shivakumar, L. (2005). Earnings quality in UK private firms: comparative loss recognition timeliness. Journal of accounting and economics, 39(1), 83-128.
Barboza, F., Kimura, H. and Altman, E. (2017). Machine learning models and bankruptcy prediction, Expert Systems with Applications 83: 405–417.
Bates TW, Kahle KM, Stulz RM (2009) Why do U.S. firms hold so much more cash than they used to? J Finance 64(5):1985–2021.
Bhuiyan MBU, Hooks J (2019) Cash holding and over-investment behavior in firms with problem directors. Int Rev Econ Financial 61:35–51.
Bigelli, M., & Sánchez-Vidal, J. (2012). Cash holdings in private firms. Journal of Banking & Finance, 36(1), 26-35.
Boubakri N, Ghoul S, Saffar W (2013) Cash holdings of politically connected firms. J Multinatl Finance Manag 23(4):338–355.
Breiman, L. (1996). Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24(6), 2350-2383.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth Int. Group, 37(15), 237-251.
Campello M, Graham JR, Harvey CR (2010) The real effects of financial constraints: evidence from a financial crisis. J Financial Econ 97(3):470–487.
Chen D, Li S, Xiao JZ, Zou H (2014) The effect of government quality on corporate cash holdings. J Corp Finance 27:384–400.
Chen, Y. J., Lin, J. A., Chen, Y. M., & Wu, J. H. (2019). Financial forecasting with multivariate adaptive regression splines and queen genetic algorithm-support vector regression. IEEE Access, 7, 112931-112938.
Claveria, O., Monte, E., & Torra, S. (2017). Assessment of the effect of the financial crisis on agents’ expectations through symbolic regression. Applied Economics Letters, 24(9), 648-652.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing, 91, 106263.
David, M. (2015). Auto insurance premium calculation using generalized linear models. Procedia Economics and Finance, 20, 147-156.
Diaw A (2021) Corporate cash holdings in emerging markets. Borsa Istanbul Rev 21(2) 139–148.
Ditmar, A.; Mahrt-smith, j. & servaes, H. (2003). International Corporate Governance and Corporate Cash Holdings. Journal of Financial and Quantitative Analysis, 38(1), pp:111-133.
Donepudi PK, Banu MH, Khan W, Neogy TP, Asadullah ABM, Ahmed AAA (2020) Artifical intelligence and machine learning in treasury management: a systematic literature review. Int J Manag 11(11):13–22.
Ellington, M., Stamatogiannis, M. P., & Zheng, Y. (2022). A study of cross-industry return predictability in the Chinese stock market. International Review of Financial Analysis, 83, 102249.
Elyasiani, E., & Movaghari, H. (2022). Determinants of corporate cash holdings: An application of a robust variable selection technique. International Review of Economics & Finance, 80, 967-993.
Elyasiani, E., Jia, J., & Movaghari, H. (2019). Determinants of dividend payout and dividend propensity in an emerging market, Iran: an application of the LASSO. Applied Economics, 51(42), 4576-4596.
Faraji Tabrizi, Arshiya, Hejbar Kiani, Kambyz, Mimar Nejad, Abbas, Ghafari, Farhad (2021). Investigation of the Affecting on the Gross Domestic Product of Selected Countries with Emphasis on the Role of Exchange Rate; ARDL-PMG Approach. Economic growth and development research. (In Persian).
Foley CF, Hartzell JC, Titman S, Twite G (2007) Why do firms hold so much cash? A tax-based explanation. J Financial Econ 86(3):579–607.
García‐Teruel, P. J., Martínez‐Solano, P., & Sánchez‐Ballesta, J. P. (2009). Accrual’s quality and corporate cash holdings. Accounting & Finance, 49(1), 95-115.
Harford, J., Mansi, S. A., & Maxwell, W. F. (2008). Corporate governance and firm cash holdings in the US. Journal of financial economics, 87(3), 535-555.
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting corporate bankruptcy: An evaluation of alternative statistical frameworks. Journal of Business Finance & Accounting, 44(1-2), 3-34.
Kim, J. B., Lee, J. J., & Park, J. C. (2015). Audit quality and the market value of cash holdings: The case of office-level auditor industry specialization. Auditing: A Journal of Practice & Theory, 34(2), 27-57.
Lerner, A. P. (1936). Mr. keynes general theory of employment, interest and money. Int'l Lab. Rev., 34, 435.
Li, F. (2010). The information content of forward-looking statements in corporate filingsa na¨ıve bayesian machine learning approach, Journal of Accounting Research 48(5): 1049– 1102.
Liu, H., & Zhang, Z. (2022). Probing the carbon emissions in 30 regions of China based on symbolic regression and Tapio decoupling. Environmental Science and Pollution Research, 29(2), 2650-2663.
Lozano MB, Yaman S (2020) The European financial crisis and firms’ cash holding policy: an analysis of the precautionary motive. Glob Pol 11(S1):84–94.
Maleki, Atefe, Jalalinia, Saeed, Hamzaei, Asghar (2022). The relationship between CEO experience and cash holding levels. Accounting and Management Perspective, 5(67), 10-1. (in persian).
Manoel AAS, Moraes MBC, Santos DFL, Neves MF (2018) Determinants of corporate cash holdings in times of crisis: insights from Brazilian sugarcane industry private firms. Int Food Agribus Manag Rev 21(2):201–217.
Miller MH, Orr D (1966) A model of the demand for money by firms. Q J Econ 80(3):413–435.
Mulai, Rahim (2022). The effect of accounting information quality on cash retention with emphasis on inflation. Accounting and Management Perspective, 5(61), 103-114. (in persian).
Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106.
Opler, T., Pinkowitz, L., Stulz, R., & Williamson, R. (1999). The determinants and implications of corporate cash holdings. Journal of financial economics, 52(1), 3-46.
Oz, I. O., Yelkenci, T., & Meral, G. (2021). The role of earnings components and machine learning on the revelation of deteriorating firm performance. International Review of Financial Analysis, 77, 101797.
Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for financial applications: A survey. Applied Soft Computing, 93, 106384.
Ozkan A, Ozkan N (2004) Corporate cash holdings: an empirical investigation of UK companies. J Bank Finance 28(9):2103–2134.
Özlem, Ş., & Tan, O. F. (2022). Predicting cash holdings using supervised machine learning algorithms. Financial Innovation, 8(1), 1-19.
Palazzo, B. (2012). Cash holdings, risk, and expected returns. Journal of Financial Economics, 104(1), 162-185.
Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19-50.
Pourgadimi, K., Bahri Sales, J., Jabbarzadeh Kangarliue, S., & ZavarRezaee, A. (2022). Presenting the developed model of Benish model with emphasis on audit quality features using neural network, vector machine and random forest. Advances in Finance and Investment, 3(6), 30-1.(in persian).
Rafi, M., Wahab, M. T., Khan, M. B., & Raza, H. (2020, January). ATM cash prediction using time series approach. In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-6). IEEE.
Rajabzadeh, H., Gorganli davaji, J., naderian, A., & ashrafi, M. (2022). Forecast the operating cash flow of accepted companies In Tehran Stock Exchange using machine learning method. Management Accounting. (In Persian).
Ramnath, S., Rock, S., & Shane, P. B. (2008). Financial analysts' forecasts and stock recommendations: A review of the research. Foundations and Trends® in Finance, 2(4), 311-421.
Sarfraz M, Shah SGM, Ivascu M, Quereshi MAA (2020) Explicating the impact of hierarchical CEO sucession on small-medium enterprises’ performance and cash holdings. Int J Financial Econ.
Schapire, R. E., & Freund, Y. (2012). Boosting: Foundations and Algorithms. 1621 Cambridge, MA.
Schauten MB, Dijk D, van der Wall JP (2011) Corporate governance and the value of excess cash holdings of large European firms. Eur Financial Manag 19(5):991–1016.
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181.
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181.
Shekarkhah, Javad, Mortezazadeh, Mojtabi (2015). Comparison of cash holding determinants in different industries. Planning and Budget Quarterly, 20(1), 67-86. (in persian).
Shimin, L. E. I., Ke, X. U., Huang, Y., & Xinye, S. H. A. (2020). An Xgboost based system for financial fraud detection. In E3S Web of Conferences (Vol. 214, p. 02042). EDP Sciences.
Song, K. R., & Lee, Y. (2012). Long-term effects of a financial crisis: Evidence from cash holdings of East Asian firms. Journal of Financial and Quantitative analysis, 47(3), 617-641.
Subramaniam, V., Tang, T. T., Yue, H., & Zhou, X. (2011). Firm structure and corporate cash holdings. Journal of Corporate Finance, 17(3), 759-773.
Tian, S., Yu, Y., Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-100.
ULUDAĞ, O., & GÜRSOY, A. (2020). On the financial situation analysis with KNN and naive Bayes classification algorithms. Journal of the Institute of Science and Technology, 10(4), 2881-2888.
Wahlen, J. M. and Wieland, M. M. (2011). Can financial statement analysis beat consensus analysts’ recommendations?, Review of Accounting Studies 16(1): 89–115.
Wu, H. C., Chen, J. H., & Wang, P. W. (2021). Cash Holdings Prediction Using Decision Tree Algorithms and Comparison with Logistic Regression Model. Cybernetics and Systems, 52(8), 689-704.
Wu, X., Wang, Y., & Tong, X. (2021). Cash holdings and oil price uncertainty exposures. Energy Economics, 99, 105303.
Xinyue, C., Zhaoyu, X., & Yue, Z. (2020). Using Machine Learning to Forecast Future Earnings. Atlantic Economic Journal, 48(4), 543-545.
Xinyue, C., Zhaoyu, X., & Yue, Z. (2020). Using Machine Learning to Forecast Future Earnings. Atlantic Economic Journal, 48(4), 543-545.
Zhang, X., & Zhou, H. (2022). The effect of market competition on corporate cash holdings: An analysis of corporate innovation and financial constraint. International Review of Financial Analysis, 82, 102163. | ||
آمار تعداد مشاهده مقاله: 651 تعداد دریافت فایل اصل مقاله: 341 |