تعداد نشریات | 25 |
تعداد شمارهها | 926 |
تعداد مقالات | 7,634 |
تعداد مشاهده مقاله | 12,435,964 |
تعداد دریافت فایل اصل مقاله | 8,851,260 |
بررسی مقایسه ای اثر تلقیح دو سویه باکتری محرک رشد تولید کننده سایدروفور (Enterobacter cloacae وBacillus cereus ) بر دسترسی آهن در نهال های پسته (Pistacia Vera L.) | ||
زیست شناسی کاربردی | ||
مقاله 4، دوره 36، شماره 1 - شماره پیاپی 75، خرداد 1402، صفحه 85-108 اصل مقاله (1.57 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.40791.1493 | ||
نویسندگان | ||
فائقه بهرامی نژاد1؛ فاطمه نصیبی2؛ حکیمه علومی3؛ رزا عرب* 4 | ||
1دانشجوی کارشناسی ارشد گروه زیست شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان | ||
2دانشیار گروه زیست شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان | ||
3دانشیار دانشگاه تحصیلات تکمیلی و فناوری پیشرفته کرمان | ||
4مربی گروه زیست شناسی، واحد بم، دانشگاه ازاد اسلامی، بم، ایران | ||
چکیده | ||
کمبود آهن یکی از مهم ترین مشکلاتی است که رشد گیاهان را تحت تاثیر قرار می دهد. در این پژوهش اثر دو سویه باکتری محرک رشد تولید کننده سایدروفر (Enterobacter cloacae وBacillus cereus ) بر ویژگی های بیوشیمیایی نهالهای پسته در شرایط فراهمی و کمبود آهن بررسی گردید. در این تحقیق که به صورت فاکتوریل در قالب طرح کامل تصادفی انجام شد، آهن فریک (Fe+3) و آهن فروس (Fe+2) با غلظت20 میکرومولار به نهال های که به مدت یک ماه رشد کرده بودند داده شد. گیاهان فاقد آهن (آهن صفر) به عنوان کنترل در نظر گرفته شدند. نتایج نشان داد آهن فریک در غلظت20 میکرومولار و آهن صفر باعث کاهش رشد گیاه و آسیب به آنها گردید. با به کارگیری باکتری های محرک رشد در گیاهان تیمار یافته با آهن فریک، برخی از پارامترهای رشد مانند وزن تر، رنگیزه های فتوسنتزی، ترکیبات فنلی، قندهای محلول، پراکسیداسیون لیپیدها و پرولین بهبود یافتند. تیمار گیاهان با باکتری های محرک رشد همچنین منجر به افزایش مقدار پروتئین در گیاهان تیمار شده با آهن فریک گردیدند. باکتریهای محرک رشد همچنین منجر به افزایش جذب آهن در اندام های هوایی نهال های تیمار شده با آهن فریک شدند. به نظر میرسد در گیاهان تیمار شده با آهن فریک، باکتری های محرک رشد با تولید سایدروفر منجر به احیا آهن و افزایش آهن در دسترس گیاه و تخفیف تنش کمبود آهن شدند. | ||
کلیدواژهها | ||
آهن فریک؛ باکتری های PGPR؛ پراکسیداسیون لیپید؛ کمبود آهن | ||
عنوان مقاله [English] | ||
A comparative study of inoculation with two growth-promoting and siderophore-producing bacteria (Enterobacter cloacae & Bacillus cereus) on iron availability in pistachio seedlings (Pistacia Vera L.) | ||
نویسندگان [English] | ||
Faegheh Bahraminejad1؛ Fatemeh Nasibi2؛ Hakimeh Oloumi3؛ roza arab4 | ||
1Master's student, Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman | ||
2Associate Professor, Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman | ||
3Associate Professor of Kerman University of Postgraduate Education and Advanced Technology | ||
4Instructor of Biology Department, Bam Branch, Islamic Azad University, Bam, Iran | ||
چکیده [English] | ||
Iron deficiency is one of the most important problems that affects the growth of plants. In this study, the effect of two strains of growth stimulating bacteria producing siderophore (Enterobacter cloacae & Bacillus cereus) on biochemical properties of pistachio seedlings in conditions of availability and deficiency of iron was investigated. In this research, which was done in a factorial design in the form of a completely randomized pattern, ferric iron (Fe + 3) and ferrous iron (Fe + 2) were given to plants that had grown for two months at a concentration of 20 micromolar. Plants without iron (zero iron) were considered as controls. The results showed that ferric iron in concentrations of 20μM and zero iron reduced plant growth and damage to them. By using growth-promoting bacteria in ferric iron-treated plants, some growth parameters such as fresh weight, photosynthetic pigments, phenolic compounds, soluble sugars, lipid peroxidation and proline were improved. Treatment of plants with growth-promoting bacteria also increased the amount of protein in plants treated with ferric iron. Growth-promoting bacteria also increased iron uptake in the shoots of ferric iron-treated seedlings. It seems that in plants treated with ferric iron, growth-promoting bacteria with the production of siderophore led to the reduction of iron and increase the available iron in the plant and reduce iron deficiency stress. | ||
کلیدواژهها [English] | ||
Ferric iron, Plant growth promoting bacteria, Lipid peroxidation, iron deficiency | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
حسینی فرد، س ج، بصیرت، م، صداقتی، ن، و اخیانی، ا. (1396). دستورالعمل مدیریت تلفیقی حاصلخیزی خاک و تغذیه درختان پسته. انتشارات موسسه تحقیقات خاک و آب، کرج حسینی فرد، س ج، صداقتی، ن، محمدی محمد آبادی، ا، علی پور، ح، نیکویی دستجردی، م. (1398). اثرات محلولپاشی آهن از منابع سولفاته و کلاته بر عملکرد و کیفیت میوه درختان پسته رقم اوحدی در استان کرمان. مجله علوم و فناوری پسته، جلد 4. شماره 8
- Bates L.S., Waldern R.P. and Tare I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 29:205-207 Afrousheh, M., Ardalan, M., Hokmabadi, H. and Afrousheh, M. (2010). Nutrient deficiency disorders in Pistacia vera seedling rootstock in relation to eco-physiological, biochemical characteristics and uptake pattern of nutrients. Scientia Horticulturae, 124: 141-148. Aguado-Santacruz, G. A., Moreno-G´omez, B., Jim´enez-Francisco, B., Garc´ıa-Moya, E., Preciado-Ortiz, R. E. (2012). Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: A synthesis. Revista Fitotecnia Mexicana, 35: 9-21 Ahluwalia, O., Singh, P.C. and Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5:100032. Alexander, D. B. and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of soils, 12(1): 39-45. Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K. and Kalra, A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific reports, 6: 34768. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254 Cassán, F., Vanderleyden, J. and Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33(2): 440-459. De Santiago, A., Garc´ıa-L´opezm A, M., Quintero, J. M., Avil´es, M., Delgado, A. (2013). Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biology and Biochemistry, 57: 598–605. De Souza, R., Ambrosini, A., Passaglia, L. M. P. (2015). Plant growth promoting bacteria as inoculants in agricultural soils. Genetic and Molecular Biology, 38: 401–419. Do Amaral, F. P., Pankievicz, V. C., Arisi, A. C. M., de Souza, E. M., Pedrosa, F. and Stacey, G. (2016). Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant molecular biology, 90(6): 689-697. El-Ghany, A., Masrahi, Y. S., Mohamed, A., Abboud, A. and Alawlaqi, M. M. (2015). Maize (Zea Mays L.) Growth and Metabolic Dynamics with Plant Growth-Promoting Rhizobacteria under Salt Stresses. J Plant Pathol Microb, 6: 305. Esther, J., Pattanaik, A., Pradhan, N. and Sukla, L.B. (2020). Applications of Dissimilatory Iron Reducing Bacteria (DIRB) for recovery of Ni and Co from low-grade lateritic nickel ore. Materials Today: Proceedings, 30: 351-354. Fales, F.W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry.193: 113-124. Ferreira, M.J., Silva, H. and Cunha, A. (2019). Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review. Pedosphere, 29(4):409-420. Gao, L., Velioglu Y.S., Mazza G. and Oomah B.D (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry. 19;46(10): 4113-7. Heath R.L. and Packer L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 1;125:189-98 Kant S., Kant P., Raveh E., and Barak S. (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell & Environment, 29 (7): 1220-1234. La Torre-Ruiz, D., Ruiz-Valdiviezo, V. M., Rincón-Molina, C. I., Rodríguez-Mendiola, M., Arias-Castro, C., Gutiérrez-Miceli, F. A. and Rincón-Rosales, R. (2016). Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Brazilian journal of microbiology, 47(3): 587-596. Lightenthaler H. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods in Enzymology,148:350-82. Masalha, J., Kosegarten, H., Elmaci, O., Mengel, K. (2000). The central role of microbial activity for iron acquisition in maize and sunflower. Biology and Fertility of Soils, 30: 433–439. Maziah, M. Z. (2010). Influence of boron on the growth and biochemical changes in plant growth Meena, B. R. (2000). Induction of pathogenesis related proteins, phenolics and phenylalanine ammonia Mimmo, T., Del Buono, D., Terzano, R., Tomasi, N., Vigani, G., Crecchio, C., Pinton, R., Zocchi, G., Cesco, S. (2014). Rhizospheric organic compounds in the soil-microorganism-plant system: Their role in iron availability. Europian journal of Soil Sciences, 65: 629–642 Mirzapour, M. H. and Khoshgoftarmanesh, A. H. (2013). Effect of soil and foliar application of iron and Morales, F., Belkhodja, R., Abadía, A. and Abadía, J. (2000). Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.). Photosynthesis Research, 63(1): 9-21. Pii, Y., Penn, A., Terzano, R., Crecchio, C., Mimmo, T., Cesco, S. (2015). Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant physiology and Biochemistry, 87: 45–52 Rout, G. R. and Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3: 1-24 Sah, S. and Singh, R. (2015). Siderophore: structural and functional characterization–a comprehensive review. Agriculture (Polnohospodárstvo), 61(3): 97-114. Sharma, I., and Sharma, A. (2017). Physiological and biochemical changes in tomato cultivar PT-3 with Shukla, P. S., Agarwal, P. K. and Jha, B. (2012). Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. Journal of plant growth regulation, 31(2): 195-206. Siddiqui, Z. A. (2005). PGPR: prospective biocontrol agents of plant pathogens. In PGPR: biocontrol and biofertilization, pp: 111-142). Singh, N., Mishra, K. and Varma, A. (2015). Isolation, screening and characterization of PGPRs from the semi-arid rhizospheric soil of Jatropha curcas. Journal of Endocytobiosis and Cell research, 2: 13-20. Williamson, A.J., Folens, K., Matthijs, S., Cortes, Y.P., Varia, J., Du Laing, G., Boon, N. and Hennebel, T. (2021). Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. Minerals Engineering, 163: 106774 Zhang, H. M., Sun, Y., Xie, X. T., Kim, M. S., Dowd, S. E., Par´e, P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant Journal. 58: 568–577 | ||
آمار تعداد مشاهده مقاله: 295 تعداد دریافت فایل اصل مقاله: 80 |