تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,623,917 |
تعداد دریافت فایل اصل مقاله | 8,986,380 |
روابط تکاملی ساختار دمین پروتئین ATAXIN-2 در گیاهان: بینش احتمالی دخالت این پروتئین در بومیسازی ترجمه در فرایند جنینزایی گیاه برنج (Oryza sativa) | ||
زیست شناسی کاربردی | ||
دوره 35، شماره 3 - شماره پیاپی 73، آبان 1401، صفحه 25-40 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2022.37786.1447 | ||
نویسندگان | ||
بهارک حیدری* 1؛ شادی حیدری2؛ پیوند حیدری2 | ||
1استادیار گروه مهندسی کامپیوتر، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران | ||
2دکتری، گروه اصلاح نباتات، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
با توسعه فن آوریهای تعیین توالی با توان بالا، دادههای توالی با سرعت زیادی جمعآوری میشوند و تفسیر عملکرد آنها یک چالش اساسی است. ژنATXN2 کد کننده پروتئینی با عملکرد ناشناخته در برنج (oryza sativa) است. هدف از این مطالعه، تعیین ساختار دمین و پیشبینی عملکرد این پروتئین بود. از این رو درخت فیلوژنی موتیف توالی با 164 توالی اسید آمینه ATAXIN-2 از 45 گونه گیاهی توسط مجموعه MEME و نرم افزار Phylip آنالیز شد. نتایج، دو نوع کلی کلاس از پروتئینهای ATAXIN-2 را مشخص نمود. عدم وجود دمین LsmAD در یک کلاس ممکن است ویژگیهای عملکردی متمایزی را نسبت به کلاس دیگر ATAXIN-2 اعطا کند. در این پژوهش عملکرد ATAXIN-2 به عنوان پروتئینهای متصل شونده به RNA (RNA binding) پیشبینی شد که در تنظیم mRNA سیتوپلاسمی در جنینزایی برنج نقش دارد. یافتههای این پژوهش میتواند اساس تحقیق در مورد عملکرد این پروتئین در هدف قرار دادن زیرمجموعههای جداگانه mRNA به مکانهای زیر سلول در گیاهان باشد که توسط سلولهای دو قطبی جنین برای ایجاد محفظههای عملکردی مشخص بکار گرفته میشود. | ||
کلیدواژهها | ||
پروتئینهای متصل شونده به RNA؛ پیشبینی عملکرد؛ ترجمه موضعی؛ فیلوژنتیک | ||
عنوان مقاله [English] | ||
Evolutionary relationships of the ATAXIN-2 protein domain structure in plants: A possible insight into the involvement of this protein in local translation in rice (Oryza sativa) plant embryogenesis process | ||
نویسندگان [English] | ||
baharak heidari1؛ shadi heidari2؛ peivand heidari2 | ||
1Assistant Professor, Department of Computer Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran | ||
2Ph. D, Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
With the development of high-throughput sequencing technologies, sequence data is collected at a high rate and their functional annotation remains a major challenge. The ATXN2 gene encodes a protein with an unknown function in rice (Oryza sativa). The aim of this study was to determine the structure of the domain and predict the function of this protein. So the sequence motif phylogenetic tree with 164 ATAXIN-2 amino acid sequences from 45 plant species was analyzed by MEME Suite and Phylip software. The results revealed two general classes of ATAXIN-2 proteins. The absence of the LsmAD domain in one class may confer distinct functional characteristics compared to another ATAXIN-2 class. In this study, the function of ATAXIN-2 was found to be RNA binding protein that plays a role in the regulation of cytoplasmic mRNA in rice embryogenesis. Findings from this study could be the basis for research on the function of this protein in targeting separate subsets of mRNA to subcellular locations in plants, which are recruited by embryonic bipolar cells to establish specific functional compartments. | ||
کلیدواژهها [English] | ||
RNA-binding proteins, Prediction of function, Local translation, Phylogenetics | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Albrecht, M., Golatta, M., Wüllner, U. and Lengauer, T. (2004). Structural and functional analysis of ataxin-2 and ataxin-3. Eur. j. biochem., 271(15): 3155-3170. Bailey, T.L, Johnson. J., Grant, C.E. and Noble, W.S. (2015). The MEME Suite. Nucleic Acids Res., 43: W39-49. Brown, D. and Sjölander, K. (2006). Functional classification using phylogenomic inference. PLoS Comput. Biol., 30: 2(6): e77. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J. and Bealer, K., et al. (2009). BLAST+: architecture and applications. BMC Bioinfor., 10: 421. Capella-Gutierrez, S., Silla-Martinez, J.M, Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinform., 25(15): 1972-3. Chothia, C., Gough, J., Vogel, C. and Teichmann, S.A. (2003). Evolution of the protein repertoire. Sci., 300(5626): 1701-1703. Eddy, S.R. (2011). Accelerated Profile HMM Searches. PLoS Comput. Biol., 7(10): e1002195. Engelhardt, B.E., Jordan, M.I., Repo, S.T. and Brenner, S.E. (2009). Phylogenetic molecular function annotation. Journal of physics. Conference series, 180(1), 12024. Finn, R.D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L. et al. (2016). The Pfam protein family database: towards a more sustainable future. Nucleic Acids Res., 44(D1): D279-85. Heidari, Sh. (2010). A study of gene expression and functional genomics of different in vitro morphogenesis pathways by analyzing expressed sequence tags (ESTs). MSc. Thesis on Agricultural Science, Depatment of Plant breeding, Shiraz university, 380P. Heidari, Sh., Azizinezhad, R. and Haghparast, R. (2017). Investigation on genetic diversity in Triticum turgidum L. var. durum using agro-morphological characters and molecular markers. Indian J. Genet. Plant Breed.,77(2): 242-250. Heidari, Sh., Azizinezhad, R., Haghparast, R. and P. Heidari. (2019). Evaluation of the association among yield and contributing characters through path coefficient analysis in advanced lines of durum wheat under diverse conditions. J. Anim. Plant Sci., 29(5): 1325-1335. Heidari, Sh., Heidari, P., Azizinezhad, R., Etminan, A. and Khosroshahli, M. (2020). Assessment of genetic variability, heritability and genetic advance for agro-morphological and some in-vitro related-traits in durum wheat. Bulg. J. Agric. Sci., 26(1): 120–127. Heidary, P., Maleki Zanjani, B., Heidary, S. (2012). A study of gene expression and functional genomics of wheat, rice, cotton and festuca plants under drought stress by analyzing expressed sequence tags (EST). modern genetics journal (mgj), 7(2 (29)): 129-140. Imai, K. and Nakai, K. (2010). Prediction of subcellular locations of proteins: where to proceed? Proteomics, 10: 3970-3983. Jeffery, W. R., Tomlinson, C. R. and Brodeur, R. D. (1983). Localization of actin messenger RNA during early ascidian development. Dev. Biol., 99: 408-417. Jiménez-López, D. and Guzmán, P. (2014). Insights into the evolution and domain structure of ATAXIN-2 proteins across eukaryotes. BMC research notes, 7, 453. Kandler-Singer, I. and Kalthoff, K. (1976). RNase sensitivity of an anterior morphogenetic determinant in an insect egg (Smittia sp., Chironomidae, Diptera). Proc. Natl. Acad. Sci. USA, 73: 3739-3743. Katoh, K., Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 30(4): 772-80 Keene, J. D. and Tenenbaum, S. A. (2002). Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell, 9: 1161-1167. Kiehl, T. R., Nechiporuk, A., Figueroa, K. P., Keating, M. T., Huynh, D. P. and Pulst, S. M. (2006). Generation and characterization of Sca2 (ATAXIN-2) knockout mice. Biochem. Biophys. Res. Commun., 339(1): 17-24. Kiehl, T. R., Shibata, H. and Pulst, S. M. (2000). The ortholog of human ATAXIN-2 is essential for early embryonic patterning in C. elegans. J. Mol. Neurosci., 15(3) :231-41. Lastres-Becker, I., Rüb, U. and Auburger, G. (2008). Spinocerebellar ataxia 2 (SCA2). Cerebellum, 7: 115-124. Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., Hughes, T. R., Tomancak, P., Krause, H. M. (2007). Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell, 131: 174-187. Li, Y. R., King, O. D., Shorter, J. and Gitler, A. D. (2013). Stress granules as crucibles of ALS pathogenesis. J. Cell Biol., 201(3): 361-372. Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M. K., Geer, L. Y, Geer, R. C. et al. (2013). CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res., 41: D348-52. Medioni, C., Mowry, K. and Besse, F. (2012). Principles and roles of mRNA localization in animal development. Development (Cambridge, England), 139(18): 3263-3276. Nadzirin, N. and Firdaus-Raih, M. (2012). Proteins of unknown function in the Protein Data Bank (PDB): an inventory of true uncharacterized proteins and computational tools for their analysis. International journal of molecular sciences, 13(10): 12761-12772. Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M. L., Lehrach, H. and Krobitsch, S. (2007). Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol. Biol. Cell, 18(4):1385-96. Palacios, I. M. and St Johnston, D. (2001). Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. Annu. Rev. Cell Dev. Biol., 17: 569-614. Retief, J. D. (2000). Phylogenetic Analysis Using PHYLIP. In: Misener S., Krawetz S.A. (eds) Bioinformatics Methods and Protocols. Methods Mol. Biol., 132. Humana Press, Totowa, NJ. Shaw, S. L. and Quatrano, R. S. (1996). The role of targeted secretion in the establishment of cell polarity and the orientation of the division plane in Fucus zygotes. Development, 122: 2623-2630. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P. and Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Res., 31(1): 258-261. Wong, K. C. (2019). Big data challenges in genome informatics. Biophys. Rev., 11(1): 51-54. | ||
آمار تعداد مشاهده مقاله: 699 تعداد دریافت فایل اصل مقاله: 280 |