تعداد نشریات | 25 |
تعداد شمارهها | 933 |
تعداد مقالات | 7,667 |
تعداد مشاهده مقاله | 12,518,508 |
تعداد دریافت فایل اصل مقاله | 8,898,461 |
پویاییهای ارزش در معرض ریسک: رویکرد کاپولا ـ VAR بهینهشده با الگوریتم فرا ابتکاری PSO | ||
راهبرد مدیریت مالی | ||
مقاله 1، دوره 10، شماره 2 - شماره پیاپی 37، تیر 1401، صفحه 1-28 اصل مقاله (1.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2022.39266.2653 | ||
نویسندگان | ||
محمد ندیری* 1؛ مجید مهرجو2؛ جلال نادری3 | ||
1استادیار دانشگاه تهران، دانشکدگان فارابی، دانشکده مدیریت و حسابداری، گروه مالی، قم، ایران | ||
2کارشناسی ارشد مدیریت مالی، دانشگاه تهران، تهران، ایران | ||
3دکترای مدیریت مالی، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
برآورد دقیق و صحیح ارزش در معرض ریسک(VaR) از جمله موضوعات مورد توجه پژوهشگران و نهادهای مالی است. علیرغم مفهوم ساده VaR، اندازهگیری آن دارای محدودیتهایی همانند فرض نرمال بودن توزیع، عدم در نظر گرفتن پویاییها در طی زمان و در نظر گرفتن چندکهای شرطی بهصورت خطی است. در این پژوهش از مدل MCAViaR و مدل کاپولای ترکیبی نوع کلایتون و t برای برآورد VaR و از الگوریتم بهینهسازی ازدحام ذرات (PSO) بهمنظور تخمین پارامتر وابستگی، برای حل این مشکلات استفاده شده است. نمونه پژوهش ده شرکت بزرگ و فعال بورس تهران و دوره زمانی پژوهش از فروردین سال 1398 تا اسفند سال 1398 است. نتایج پژوهش نشان میدهد که ضرایب وابستگی دمی مدل MCAViaR برای سهام مورد مطالعه برخلاف پژوهشهای خارجی برابر صفر است و در نتیجه این مدل را میتوان به دو معادله مستقل CAViaR تقسیم کرد. نتایج حاصل از تخمین کوانتایلهای متغیر با زمان، نیز حاکی از آن است که سریهای زمانی کوانتایلهای حاصل از مدل کاپولای ترکیبی به سبب فرکانس بالای زمانی نسبت به مدل MCAViaR، پویایی را بهخوبی نشان میدهد. نتایج حاصل از آزمون پسآزمایی کوپیک نیز تأییدکننده عملکرد بهتر مدل کاپولای ترکیبی نسبت به مدل MCAViaR است. | ||
کلیدواژهها | ||
تخمین VaR؛ مدل MCAViaR؛ کاپولا؛ بهینهسازی؛ الگوریتم فرا ابتکاری PSO | ||
عنوان مقاله [English] | ||
Dynamics of Value at Risk: Copula -VAR Approach Optimized with PSO Meta-Heuristic Algorithm | ||
نویسندگان [English] | ||
Mohammad Nadiri1؛ Majid Mehrjoo2؛ Jalal Naderi3 | ||
1Assistant Prof, Department of Management and Accounting, University of Tehran, College of Farabi, Qom,Iran | ||
2MSc in Financial Management, University of Tehran, Tehran, Iran | ||
3PhD in Financial Management, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
The estimation of an accurate measure of the Value-at-Risk is still a topic of interest in financial research and among risk management practitioners Despite the simple concept of VaR, measuring it is a very challenging statistical problem; because of normal distribution assumption, time-varying conditional quantiles, and the main limit of this approach consists into considering linearly conditioned quantiles. CAViaR model and its extent to the multivariate CAViaR approach (MCAViaR) have solved some of these shortcomings. To this end, Copula functions were introduced. This approach provides a flexible non-linear multivariate representation among quantiles. An important parameter of Copula functions is the degree of dependency between tail distributions, the incorrect estimation of which also leads to inaccurate interpretation. One way to estimate the dependency parameter is to use the optimization process; such as meta-heuristic algorithms due to their very high accuracy. Among the meta-heuristic algorithms, the Particle Swarm Optimization (PSO) algorithm is widely used in optimization research due to its high convergence speed. In this study, the MCAViaR model and the Clayton and student’s-t-type hybrid Copula model are used to estimate VaR dynamics in 10 large and active companies of the Tehran Stock Exchange from April 2009 to March 2020. The results showed that the tail dependency coefficients of the MCAViaR model for the studied stocks are zero, and therefore this model can be divided into two independent CAViaR equations. The results of estimating time-varying quantiles, which indicate the dynamics of value at risk, indicate that the time series of quantiles derived from the hybrid Copula model shows the dynamics well due to the higher time-frequency than the MCAViaR model. The results of the Kupiec back-test also confirm the better performance of the hybrid Copula model than the MCAViaR model. | ||
کلیدواژهها [English] | ||
VaR Estimation, MCAViaR Model, Copula, Optimization, PSO Meta-Heuristic Algorithm | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
باباجانی، جعفر. تقویفرد، محمدتقی و غزالی، امین. (1397). «ارائه چارچوبی جهت سنجش و پیشبینی ریسک سیستمی با رویکرد ارزش در معرض خطر شرطی (CoVaR)». فصلنامه دانش مالی تحلیل اوراق بهادار، سال یازدهم، شماره ۳۹، 36-15. پیشبهار، اسماعیل و عابدی، سحر. (1396). «محاسبه ارزش در معرض خطر پرتفوی: کاربرد رهیافت کاپولا». مهندسی مالی و مدیریت اوراق بهادار (مدیریت پرتفوی)، دوره 8، شماره 30، 73-55. علی زاده، علی. فلاح، میر فیض. (1400).« ارزیابی توان تبیین نظریه ارزش فرین (حدی) و مدلهای کاپولا-گارچ در پیشبینی ارزش در معرض ریسک و ریزش مورد انتظار پرتفوی در پرتفوی شرکتهای سرمایهگذاری بورس اوراق بهادار تهران». مهندسی مالی و مدیریت اوراق بهادار، (46)12، 364-340. فلاحپور، سعید و باغبان، مهدی. (1393). «استفاده از کاپولا-CVaR در بهینهسازی سبد سرمایهگذاری و مقایسه تطبیقی آن با روش Mean-CVaR». مجله پژوهشها و سیاستهای اقتصادی، دوره 22، شماره 72، 172-155.
Alizadeh, A., Fallah, M. (2021)."The assessment of extreme value theory and Copula - Garch models in prediction of value at risk and the expected short fall in portfolio Investment Company in Tehran stock exchange". Financial engineering and securities management. 12(46), 340-364. (In Persian) Aloui, R. & Aissa, M. S. B. (2016). "Relationship between oil, stock prices and exchange rates: A vine copula based GARCH method". The North American Journal of Economics and Finance, 37, 458-471. Artzner P, Delbaen F, Eber JM, Heath D. (1999). "Coherent measures of risk". Math Finance; 9:203–228. doi: 10.1111/1467-9965.00068. Baba Jani, J., Taghavi Fard, M., Ghazali, A. (2018). "A framework for measuring and predicting system risk with the conditional value at risk approach". Financial Knowledge of Securities Analysis, 11(39), 15-36. (In Persian) Baumol, William J. (1963), "An expected gain confidence limit criterion for portfolio selection". Management Science. 10, 174—182. Bollerslev, T. (1986). "Generalized autoregressive conditional heteroskedasticity". Journal of econometrics, 31(3), 307-327. Bollerslev, T., Engle, R. F., & Nelson, D. B. (1994). "ARCH models". Handbook of econometrics, 4, 2959-3038. Byuna Kiwoong, Song Seongjoo, (2021). "Value at Risk of portfolios using copulas". Communications for Statistical Applications and Methods; 28, 59-79. De Luca, G. Rivieccio, G. & Corsaro, S. (2019). "Value-at-Risk dynamics: a copula-VAR approach". The European Journal of Finance, 26(2-3), 223-237. Eberhart, R.C. and Shi, Y.H. (1998). "Comparison between genetic algorithms and particle swarm optimization. Proceedings of IEEE" International Conference on Evolutionary Computation, 611–616. Engle, R. F., & Manganelli, S. (2004). 'CAViaR: Conditional autoregressive value at risk by regression quantiles'. Journal of business & economic statistics, 22(4), 367-381. Fallahpour S, baghban M. (2015). "Application of Copula-CVaR in Portfolio Optimization and Comparative with Mean-CVaR" . qjerp. 22 (72) :155-172. (In Persian). Filippi, C. Guastaroba, G. & Speranza, M. G. (2020). "Conditional value at risk beyond finance: a survey". International Transactions in Operational Research, 27(3), 1277-1319. Francq, C. & Zakoian, J. M. (2018). "Estimation risk for the VaR of portfolios driven by semi-parametric multivariate models". Journal of econometrics, 205(2), 381-401. Gan Huiqi; Park Myung S; Hyun Suh Sang. (2020). "Non-financial performance measures, CEO compensation, and firms’ future value". Journal of Business Research. Volume 110, Pages 213-227. Geenens Gery; Dunn Richard. (2020). "A nonparametric copula approach to conditional Value-at-Risk, Econometrics and Statistics". Volume 21, 19-37. Hart, C. (2017). "A Comparison of Value at Risk Methods: Evidence from the Swedish Stock Market". Disciplinary Domain of Humanities and Social Sciences. Hassani, H. & Yeganegi, M. R. (2019). "Sum of squared ACF and the Ljung–Box statistics". Physica A: Statistical Mechanics and its Applications, 520, 81-86. Hoorfar, A. (2007). "Evolutionary Programming in Electromagnetic Optimization". IEEE Transactions on Antennas and Propagation, 55(3), 523-537. Hotta, L. K. Lucas, E. C. & Palaro, H. P. (2008). "Estimation of VaR using copula and extreme value theory". Multinational Finance Journal, 12(3/4), 205-218. Huang Jen-Jsung, Lee Kuo Jung, Liang Hueimei; Lin Wei-Fu; (2009). "Estimating value at risk of portfolio by conditional copula-GARCH method". Insurance: Mathematics and Economics, Volume 45, Issue 3, 315-324. Karmakar, M. (2017). "Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach". The Quarterly Review of Economics and Finance, 64, 275-291. Kennedy, J. (2010). "Particle swarm optimization". Proceedings of ICNN'95 - International Conference on Neural Networks. p. 760-766. Kim, Jong-Min & Tabacu, Lucia & Jung, Hojin, (2019). "A quantile-copula approach to dependence between financial assets". The North American Journal of Economics and Finance, Elsevier, vol. 51(C). 1-11. Lee, K. S. & Geem, Z. W. (2005). "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice". Computer methods in applied mechanics and engineering, 194(36-38), 3902-3933. Nguyen, V. L. & Huynh, V. N. (2015). "Using Conditional Copula to Estimate Value-at-Risk in Vietnam’s Foreign Exchange Market". In Econometrics of Risk, 471-482. Omari, C.O. Mwita, P.N. and Gichuhi, A.W. (2018). "Currency Portfolio Risk Measurement with Generalized Autoregressive Conditional Heteroscedastic-Extreme Value Theory-Copula Model". Journal of Mathematical Finance, 8, 457-477. Pishbahar, E., abedi, S. (2017). "Measuring portfolio Value at Risk: The application of copula approach. Financial engineering and securities management" portfolio management, 8(30), 55-73. (In Persian). Rockafellar, R.T. Uryasev, S. (2000)."Optimization of Conditional Value-at-Risk". J. Risk 2, 21–41. Sklar, A. (1959). 'Fonctions de Répartition à n Dimensions et Leurs Marges". Institut Statistique de l’Université de Paris, Paris. Vol. 8. 229-231. Ubeda-Flores, M. & Fernández-Sánchez, J. (2017). "Copulas and Dependence Models with Applications". Sklar’s theorem: The cornerstone of the Theory of Copulas. 241-258. White, Halbert; Kim, Tae-Hwan; Manganelli Simone. (2015). "VAR for VaR: Measuring tail dependence using multivariate regression quantiles". Journal of Econometrics 187; 169–188. Zhang, X. & Jiang, H. (2019)."Application of Copula function in financial risk analysis". Computers & Electrical Engineering, 77, 376-388. | ||
آمار تعداد مشاهده مقاله: 434 تعداد دریافت فایل اصل مقاله: 487 |