تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,492,838 |
تعداد دریافت فایل اصل مقاله | 8,884,562 |
The influence of deposition rate on optical and microstructural characteristics of nanostructured ZnSe films prepared by thermal evaporation technique | ||
Journal of Interfaces, Thin Films, and Low dimensional systems | ||
دوره 4، شماره 1، بهمن 2020، صفحه 347-356 اصل مقاله (1.25 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22051/jitl.2021.36255.1054 | ||
نویسندگان | ||
Mohsen Ghasemi* 1؛ Soodeh Momeni1؛ Afrouz Taherian2 | ||
1Department of Physics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran | ||
2Faculty of Physics, University of Isfahan, Isfahan, Iran | ||
چکیده | ||
In this research, ZnSe thin films were deposited on glass substrate by the thermal evaporation method with deposition rates of 0.2, 0.4, 0.6, and 0.8 nm/s and with a constant thickness of 250 nm. All samples were annealed for 100 minutes at a temperature of 400 °C. Various techniques such as UV–Vis spectrophotometer, X-ray diffraction (XRD) analysis, and scanning electron microscope (SEM) were used to investigate different physical parameters such as energy band gap, refractive index, extinction coefficient, dielectric constant, and porosity of the ZnSe thin films. The influence of the deposition rate on the mentioned parameters was investigated. The XRD patterns showed that the ZnSe thin films have a cubic structure. The structural parameters such as lattice constant, crystallite size, strain, and dislocation density were determined for different samples. The maximum average transmittance of %93.1 in the visible wavelength region was obtained for the deposition rate of 0.6 (nm/s). The optical band gap was calculated using the derivation of absorption spectrum fitting (DASF) method, and the values of the energy bandgap were obtained in the range of 3.710.01 to 3.980.01 eV. The XRD results acquired from the Williamson-Hall method showed that the crystallites size and strain of different samples were achieved in the range of 21.61.1 to 42.92.3 nm and (0.610.02)×10-3 to (2.890.04)×10-3, respectively. Finally, the relation between the optical and microstructural properties of the ZnSe films was studied. | ||
کلیدواژهها | ||
thermal evaporation technique؛ nanostructured ZnSe films؛ deposition rate؛ optical properties؛ microstructural properties | ||
عنوان مقاله [English] | ||
تاثیر آهنگ انباشت بر مشخصات اپتیکی و ریزساختاری لایه های نانوساختار ZnSe تهیه شده با روش تبخیر حرارتی | ||
نویسندگان [English] | ||
محسن قاسمی1؛ سوده مومنی1؛ افروز طاهریان2 | ||
1گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد، ایران | ||
2دانشکده فیزیک، دانشگاه اصفهان، اصفهان، ایران | ||
چکیده [English] | ||
در این پژوهش ، لایه های نازک ZnSe با روش تبخیر حرارتی با آهنگ انباشت 0.2 ، 0.4 ، 0.6 و 0.8 نانومتر بر ثانیه و با ضخامت ثابت 250 نانومتر بر روی بستره شیشه ای انباشت شدند. همه نمونه ها به مدت 100 دقیقه در دمای 400 درجه سانتیگراد آنیل شدند. تکنیک های مختلفی مانند طیف سنجی UV-Vis ، آنالیز پراش اشعه X (XRD) و میکروسکوپ الکترونی روبشی (SEM) برای بررسی پارامترهای فیزیکی مختلف مانند گاف انرژی ، ضریب شکست ، ضریب خاموش شدن ، ثابت دی الکتریک و تخلخل استفاده شد. تأثیر آهنگ انباشت بر پارامترهای ذکر شده مورد بررسی قرار گرفت. طیفهای XRD نشان داد که لایه های نازک ZnSe دارای ساختار مکعبی هستند و پارامترهای ساختاری مانند ثابت شبکه ، اندازه بلورها ، کرنش و چگالی دررفتگی برای نمونه های مختلف تعیین شد. حداکثر میانگین عبور93.1٪ در ناحیه طول موج مرئی برای آهنگ انباشت 0.6 (نانومتر بر ثانیه) بدست آمد. گاف انرژی با استفاده از روش استخراج از برازش طیف جذب (DASF) محاسبه شد و مقادیر گاف انرژی در محدوده 3.71±0.01 تا 3.98±0.01 الکترون ولت بدست آمد. در نهایت، رابطه بین ویژگی های اپتیکی و ریزساختاری لایه های ZnSe مورد مطالعه قرار گرفت. | ||
کلیدواژهها [English] | ||
تکنیک تبخیر حرارتی, لایه های ZnSe نانوساختار, آهنگ انباشت, خواص اپتیکی, خواص ریزساختاری | ||
مراجع | ||
[1] L. G. Valluzzi, M. G. Valluzzi, G. N. Darriba, M. Meyer, and L. C. Damonte, “Surfactant and Dopant Addition Effect on Optical and Structural Properties of ZnSe (Te) Nanostructured Semiconductors.” Journal of Alloys and Compounds, 829 (2020) 154488. [2] M. Imran, A. Saleem, N. A. Khan, A. A. Khurram, and N. Mehmood, “Amorphous to Crystalline Phase Transformation and Band Gap Refinement in ZnSe Thin Films.” Thin Solid Films, 648 (2018) 31. [3] E. R. Sharaf, I. S. Yahia, M. I. Mohammed, H. Y. Zahran, and E. R. Shaaban, “High Refractive Index and Third-Order Nonlinear Optical Susceptibility of Nanostructured ZnSe/FTO Thin Films: Towards Smart Multifunctional Optoelectronic Materials.” Physica B: Condensed Matter, 602 (2021) 412595. [4] F. Yao, X. Zhou, and A. Xiong, “Tunable Electronic and Optical Properties of Two-Dimensional ZnSe/AlAs van Der Waals Heterostructure.” Applied Physics A, 126 (2020) 1. [5] H. H. Yudar, S. Pat, Ş. Korkmaz, S. Özen, and V. Şenay, Zn/ZnSe Thin Films Deposition by RF Magnetron Sputtering, Journal of Materials Science: Materials in Electronics, 28 (2017) 2833. [6] S. Chuhadiya, R. Sharma, S. L. Patel, S. Chander, M. D. Kannan, and M. S. Dhaka, Thermal Annealing Induced Physical Properties of ZnSe Thin Films for Buffer Layer in Solar Cells, Physica E: Low-Dimensional Systems and Nanostructures, 117 (2020) 113845. [7] T. D. Lee and A. U. Ebong, A Review of Thin Film Solar Cell Technologies and Challenges, Renewable and Sustainable Energy Reviews, 70 (2017) 1286. [8] H. I. Elsaeedy, A. A. Hassan, H. A. Yakout, and A. Qasem, “The Significant Role of ZnSe Layer Thickness in Optimizing the Performance of ZnSe/CdTe Solar Cell for Optoelectronic Applications.” Optics & Laser Technology, 141 (2021) 107139. [9] Q. Zhang, H. Li, Y. Ma, and T. Zhai, “ZnSe Nanostructures: Synthesis, Properties and Applications.” Progress in Materials Science, 83 (2016) 472. [10] S. E. Al Garni and A. F. Qasrawi, “Absorption and Optical Conduction in InSe/ZnSe/InSe Thin Film Transistors.” Functional Materials Letters, 9 (2016) 1650019. [11] S. Ning, G. Feng, H. Zhang, W. Zhang, S. Dai, and S. Zhou, “Fabrication, Structure and Optical Application of Fe2+: ZnSe Nanocrystalline Film.” Optical Materials, 89 (2019) 473. [12] S. Thirumavalavan, K. Mani, and S. Sagadevan, “A Study of Structural, Morphological, Optical and Electrical Properties of Zinc Selenide (ZnSe) Thin Film.”Materials Today: Proceedings, 3 (2016) 2305. [13] F. M. Tezel and İ. A. Kariper, “Effect of PH on the Structural and Optical Properties of Polycrystalline ZnSe Thin Films Produced by CBD Method.” International Journal of Modern Physics B, 33 (2019) 1950024. [14] R. K. Jain, J. Kaur, A. Khanna, and A. K. Chawla, “Tailoring the Structural, Electrical, Optical and Wettability Properties of ZnSe Films by Oblique Angle Thermal Evaporation.” Materials Research Express, 6 (2019) 116451. [15] M. M. Mezdrogina, A. Y. Vinogradov, Y. V. Kozhanova, and E. A. Borsuk, “LED Structures Based on ZnO Films Obtained by RF Magnetron Sputtering for the UV Spectral Range.” Technical Physics, 65 (2020) 434. [16] D. V Savin, T. S. Tomilova, S. V Kurashkin, V. B. Ikonnikov, and E. M. Gavrishchuk, “Photoluminescence and Laser Properties of Active Media Based on ZnSe Doped with Cr, Al, Na from Spray Pyrolysis Deposited Films.” Laser Physics Letters, 17 (2020) 125802. [17] D. D. Hile, H. C. Swart, S. V Motloung, R. E. Kroon, K. O. Egbo, and L. F. Koao, “The Effect of Annealing Time on Zinc Selenide Thin Films Deposited by Photo-Assisted Chemical Bath Deposition.” Journal of Physics and Chemistry of Solids, 140 (2020) 109381. [18] Z. Fan, K. Yaddanapudi, R. Bunk, S. Mahajan, and J. M. Woodall, “Interface Studies of Molecular Beam Epitaxy (MBE) Grown ZnSe–GaAs Heterovalent Structures.” Journal of Applied Physics, 127 (2020) 245701. [19] M. R. A. Bhuiyan, M. A. H. Miah, and J. Begum, “Substrate Temperature Effect on the Structural and Optical Properties of ZnSe Thin Films,” Journal of Bangladesh Academy of Sciences, 36 (2012) 233. [20] K. Ou, S. Wang, G. Wan, M. Huang, Y. Zhang, L. Bai, and L. Yi, “A Study of Structural, Morphological and Optical Properties of Nanostructured ZnSe/ZnS Multilayer Thin Films.” Journal of Alloys and Compounds, 726 (2017) 707. [21] Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the Refractive Index Dispersion and Thickness of Hot-Pressed Chalcogenide Thin Films from an Improved Swanepoel Method.” Optical and Quantum Electronic, 49 (2017) 1. [22] G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural Characterization and Optical Properties of ZnSe Thin Films.” Applied Surface Science, 253 (2007) 9500. [23] Z. K. Heiba, A. A. Albassam, and M. B. Mohamed, “Effect of Zn/S Non-Stoichiometric Ratio on the Structural, Optical and Electronic Properties of Nano-ZnS.” Applied Physics A, 126 (2020) 1. [24] A. A. Akl, “Thermal Annealing Effect on the Crystallization and Optical Dispersion of Sprayed V2O5 Thin Films.” Journal of Physics and Chemistry of Solids, 71 (2010) 223. [25] K. V. Saravanan and K. C. J. Raju, “Quasi-Rapid Thermal Annealing Studies on Barium Strontium Titanate Thin Films Deposited on Fused Silica Substrates.” Journal of Alloys and Compounds, 571 (2013) 43. [26] D. Prakash, E. R. Shaaban, M. Shapaan, S. H. Mohamed, A. A. Othman, and K. D. Verma, “Thickness-Dependent Dispersion Parameters, Energy Gap and Nonlinear Refractive Index of ZnSe Thin Films.” Materials Research Bulletin, 80 (2016) 120. [27] S. B. Khan, Z. Zhang, and S. L. Lee, “Annealing Influence on Optical Performance of HfO2 Thin Films.” Journal of Alloys and Compounds, 816 (2020) 152552.
[28] D. Souri and Z. E. Tahan, “A New Method for the Determination of Optical Band Gap and the Nature of Optical Transitions in Semiconductors.” Applied Physics B, 119 (2015) 273. [29] Y. Jiang and N. Bahlawane, “Effect of Nucleation and Growth Kinetics on the Electrical and Optical Properties of Undoped ZnO Films.” The Journal of Physical Chemistry C, 114 (2010) 5121. [30] R. Khalfi, D. Talantikite-Touati, A. Tounsi, and H. Merzouk, “Effect of Deposition Time on Structural and Optical Properties of ZnSe Thin Films Grown by CBD Method.” Optical Materials, 106 (2020) 109989. [31] P. Herve and L. K. J. Vandamme, “General Relation between Refractive Index and Energy Gap in Semiconductors.” Infrared Physics & Technology, 35 (1994) 609. [32] D. Souri, A. R. Khezripour, M. Molaei, and M. Karimipour, “ZnSe and Copper-Doped ZnSe Nanocrystals (NCs): Optical Absorbance and Precise Determination of Energy Band Gap beside Their Exact Optical Transition Type and Urbach Energy.” Current Applied Physics, 17 (2017) 41. [33] S. Ebrahimi, D. Souri, and M. Ghabooli, “Third Order Non-Linear Optical Susceptibility (χ (3)) and Evaluation of Antibacterial Activity of Cu-Doped ZnSe Nanocrystals Fabricated by Hydro-Microwave Technique.” Journal of Cluster Science, 30 (2019) 677. [34] L. Ion, S. Iftimie, A. Radu, V. A. Antohe, O. Toma, and S. Antohe, “Physical Properties of RF-Sputtered Znse Thin Films For Photovoltaic Applications: Influence of Film Thickness.” Proceedings of The Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 22 (2021) 27. [35] D. Nath, F. Singh, and R. Das, “X-Ray Diffraction Analysis by Williamson-Hall, Halder-Wagner and Size-Strain Plot Methods of CdSe Nanoparticles-a Comparative Study.” Materials Chemistry and Physics, 239 (2020) 122021. [36] V. Soleimanian and M. Mojtahedi, “A Comparison between Different X-Ray Diffraction Line Broadening Analysis Methods for Nanocrystalline Ball-Milled FCC Powders.” Applied Physics A, 119 (2015) 977. [37] D. N. Papadimitriou, “Vacuum and Liquid-Phase Processing of ZnSe Buffer-Layer for Chalcopyrite Absorber Based Photovoltaic Technology.” ECS Journal of Solid State Science and Technology, 7 (2018) 541. | ||
آمار تعداد مشاهده مقاله: 453 تعداد دریافت فایل اصل مقاله: 263 |