تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,494,301 |
تعداد دریافت فایل اصل مقاله | 8,885,678 |
بهینه سازی شرایط تولید اگزوپلی ساکارید توسط لوکونوستوک دکسترانیکوم جدا شده از پنیر سنتی سوریه | ||
زیست شناسی کاربردی | ||
مقاله 4، دوره 34، شماره 1 - شماره پیاپی 67، اردیبهشت 1400، صفحه 56-71 اصل مقاله (550.44 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2020.20140.1225 | ||
نویسندگان | ||
مهند حاج مصطفی* 1؛ بسام العقله2؛ قاسم عشوری1 | ||
1دانشجوی دکترای پژوهشکده زیست فناوری و مهندسی زیستی، دانشگاه صنعتی اصفهان، اصفهان، ایران | ||
2محقق درکمیسیون ملی بیوتکنولوژی دمشق، دمشق، سوریه | ||
چکیده | ||
تولید پلیساکاریدهای لاکتیکی (با توجه به گراس بودن آنها) میتواند به عنوان جایگزین ارزشمندی برای پلیساکاریدهای میکروبی تولید شده فعلی باشند. در این تحقیق به بررسی منابع کربن و نیتروژن مناسب برای تولید اگزوپلیساکاریدها (EPSs) توسط لوکونوستوک دکسترانیکوم (Leuconostoc dextranicum) که یک باکتری گراسی است، پرداخته شد. نتایج بررسی-های انجام شده نشان داد که گلوکز (Glu) در مقایسه با قندهای دیگر و پپتون در مقایسه با منابع نیتروژن دیگر باعث تولید EPSs بیشتری در محیط کشت شدند. لذا در ادامۀ تحقیق تنها از گلوکز و پپتون جهت بهینه کردن شرایط تولید EPSs استفاده شد. به منظور بررسی تأثیر و بهینه سازی شرایط تولید EPS، سه پارامتر دما، pH و زمان انکوباسیون، هر کدام در پنج سطح انتخاب شده و به طور جداگانه بهینه شدند. سپس برای دستیابی به سطوحی از متغیرهای مستقل که در نتیجه به کارگیری آنها بهترین محصول از واکنش به دست میآمد، بهینه سازی انجام شد. بر اساس نتایج بهدست آمده، دمای انکوباسیون°C 40، pH برابر 5/5 و زمان تخمیر 48 ساعت به عنوان بهترین شرایط برای تولید آزمایشگاهی EPSs انتخاب شدند. به طور خلاصه نتایج حاصل از این تحقیق نشان داد که میتوان از باکتری بومی لوکونوستوک دکسترانیکوم و محیط کشت ارزان قیمت شیر پس چرخ (Skimmed milk) برای تولید این محصول با ارزش استفاده کرد. | ||
کلیدواژهها | ||
EPSs؛ باکتریهای اسید لاکتیک؛ L. dextranicum؛ Skimmed milk | ||
عنوان مقاله [English] | ||
Optimization of EPS production conditions by Leuconostoc dextranicum isolated from traditional Syrian cheese | ||
نویسندگان [English] | ||
Muhannad Haj Mustafa1؛ Bassam Al-oklah2؛ Ghasem Ashouri1 | ||
1Translation results PhD student at the Research Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran | ||
2Researcher at the National Biotechnology Commission of Damascus, Damascus, Syria | ||
چکیده [English] | ||
Increasing demand for industrial applications of various natural polymers has led to increased attention to the use of exopolysaccharides made by microorganisms. Since most lactic acid bacteria (LAB) are food-grade microorganisms with GRAS status (Generally Recognized As Safe), the use of the secreted EPS as natural alternatives to produce all-natural food products without additives from LAB has received increased attention. In this research, carbon and nitrogen sources suitable for the production of exopolysaccharides (EPSs) by Leuconostoc dextranicum, as GRAS bacterium, were investigated. The results showed that glucose (Glu) produced more EPSs in the medium compared to other sugars and peptone compared to other nitrogen sources. Therefore, only glucose and peptone were used to optimize the production conditions of EPSs. In order to investigate the effect and optimization of EPS production conditions, three parameters of temperature, pH and incubation time, each was selected at five levels and optimized separately. Then, optimization was performed to determine the levels at which independent variables attain the best production. Results showed that the best laboratory condition for EPSs production would be yielded at the incubation temperature of 40 °C, pH of 5.5 and fermentation time of 48 hours. In summary, the results of this study showed the potential of Leu. dextranicum as a native microorganism and the cheap culture medium of skimmed milk for producing such a valuable product. | ||
کلیدواژهها [English] | ||
EPSs, Lactic acid bacteria, Leu. dextranicum, Skimmed milk | ||
مراجع | ||
روح بخش، ع. و. حق شناس، ف. ( .)1369کنترل بهداشتی مواد خوراکی (نمونه برداری، آزمایش، تفسیر)، انتشارات شرکت سهامی چهر.
Aslim, B., Y. Beyatli and Z. N. Yuksekdag. (2006). Productions and monomer compositions of exopolysaccharides. by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains isolated from traditional home-made yoghurts and raw milk. Int. J. Food Sci and Technol. 41:973–979. Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3: 200. Benhadria, M. K., Touil, M. A. T. and Meddah, B. (2017). Optimization of production of Microbial Exopolysaccharides (EPS) with essential oils from two medicinal plants. J. Appl. Biosci. 111(1): 10925- 10933. Benmechernene, Z., Chentouf, H. F., Yahia, B., Fatima, G., Quintela-Baluja, M., Calo-Mata, P. and BarrosVelázquez, J. (2013). Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. Biomed Res. Int. http://dx.doi.org/10.1155/2013/418132. Cerning, J., Bouillanne, C. and Desmazeaud, M.J. (1988). Exocellular polysaccharide production by Streptococcus. thermophilus. Biotechnol. Lett. 10: 255–260. De Vuyst, L. and Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23:152-177. De Vuyst, L., De Vin, F., Vaningelgem, F. and Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687–707. Dubois, M., Gilles, J.K., Hamilton, P.A., Rebers, P.A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem, 28 (3): 350–356. Duncan, D. B. (1955). "Multiple range and multiple F tests". Biometrics. 11: 1–42. Emmanuel, C. K., Kalpy-Julien, C., Lessoy, T. and Esso, A. (2017). Probiotic profiling of Leuconostoc species isolated from a traditional fermented cassava product. Afr. J. Microbiol. Res. 11(10): 408-413. Fraqueza, M. J. (2015). Antibiotic resistance of lactic acid bacteria isolated from dry-fermented Frengova, G.I., Simova, E.D., Beshkova, D.M. and Simov, Z. I. (2000). Production and monomer composition of exopolysaccharides by yogurt starter cultures. Canadian J. Microbiol. 46: 1123–1127. Gancel, F. and Novel, G. (1994). Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures. 1. Conditions of production. J. Dairy Sci. 77: 685–688. Gassem, M.A., Schmidt, K.A. and Frank, J. F. (1997). Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii ssp. Bulgaricus. J. Food Sci. 62 (1): 171-174. Goh, K.K.T., Haisman, D.R., Archer, R.H. and Singh, H. (2005). Evaluation and modification of existing methods for the quantification of exopolysaccharides in milk-based media. Food Res. Int. 38: 605–613. Haj-Mustafa, M., Abdi, R., Sheikh-Zeinoddin, M. and Soleimanian-Zad S. (2015). Statistical study on fermentation conditions in the optimization of exopolysaccharide production by Lactobacillus rhamnosus 519 in skimmed milk base media. ISBAB. 4: 521–527. Kimmel, S.A., Roberts, R.F. and Ziegler, G.R. (1998). Optimization of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a Semi defined Medium. Appl. Environ. Microbiol. 64 (2): 659–664. Kumar, A.S., Mody, K. and Jha, B. (2007). Bacterial exopolysaccharides – a perception. J. Basic. Microbiol. 47:103–117. Laws, A., Gu, Y. and Marshall, V. (2001). Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol. Adv. 19: 1–28. Macedo, M.G., Lacroix, C. and Champagne, C.P. (2002). Combined effects of temperature and medium composition on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in a whey permeate based medium. Biotechnol. Prog. 18: 167-173. Madledo, P.R. and Gavilàn, C.G. (2005). Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88: 843–856. Mekhici, K.B., Meddah, T.T. and Boumédiene M. (2017). Optimization of production of microbial exopolysaccharides (EPS) with essential oils from two medicinal plants. J. Appl. Biosci. 111: 10925-10933. Mustafa, M. H., Lina, A.A, Oklah, B and Issa, S. (2015). Screening of locally isolated lactic acid bacteria for production of exopolysaccharides (EPS). D. U. J. Agri. Sci. 31 (1): 183-190. Nwodo, U. U., Green, E. and Okoh, A. I. (2012). Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol, 13 (11), 14002-14015. Peant, B., LaPointe, G., Gilbert, C., Atlan, D., Ward, P. and Roy, D. (2005). Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiol. 151:1839–1851. Prathima, P. C., Lule, V. K., Tomar, S. K. and Singh, A. K. (2014). Optimization of exopolysaccharide production by Lactococccus lactis NCDC 191 by response surface methodology. Int J Curr Microbiol App Sci. 3(5):835-854. sausages. Int. J. Food Microbiol. 212: 76-88. Tallon, R., Bressollier, P. and Urdaci M.C. (2003). Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Microbiol. Res. 154: 705–712. Welman, A.D. and Maddox I.S. (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges.Trends in Biot. 21 (6): 269-274. | ||
آمار تعداد مشاهده مقاله: 384 تعداد دریافت فایل اصل مقاله: 315 |