تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,494,322 |
تعداد دریافت فایل اصل مقاله | 8,885,724 |
حذف زیستی اورانیوم از محلولهای آبی توسط جاذب زیستی تیمار شده به عنوان یک استراتژی کارآمد در زیست پالایی اورانیوم | ||
زیست شناسی کاربردی | ||
مقاله 10، دوره 34، شماره 1 - شماره پیاپی 67، اردیبهشت 1400، صفحه 163-177 اصل مقاله (399.38 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2020.33051.1378 | ||
نویسندگان | ||
نساء نامداریان1؛ پریسا تاجر محمد قزوینی* 2؛ اکرم سادات طباطبایی بفرویی3 | ||
1کارشناسی ارشد . گروه زیست شناسی، واحد تهران شرق، دانشگاه آزاد اسلامی، تهران، ایران | ||
2استادیار .پژوهشگاه علوم و فنون هسته ایی تهران | ||
3گروه زیست شناسی، واحد تهران شرق، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
هدف از این مطالعه ارزیابی توانایی آزولا فیلیکولیدس تیمار شده در جذب اورانیوم به عنوان جاذب زیستی جدید است. در این پژوهش آزمایشات جذب اورانیوم توسط زیست توده تیمار نشده و تیمارشده با فروسیانید و H2O2/MgCl2 انجام شد. بررسیها مشخص کرد که حداکثر ظرفیت جذب اورانیوم توسط زیست توده های مختلف تیمار شده در pH 5 است. ایزوترم فروندلیش برای ارزیابی دادههای تجربی مورد بررسی قرار گرفت. نتایج نشان داد که جاذب تیمار شده با H2O2/MgCl2 کارآمدتر از دیگر جاذبها است و جذب اورانیوم توسط آن نسبتاً سریع و در 60 دقیقه به حداکثر میرسد. حداکثر جذب اورانیوم با استفاده از ذرات بزرگتر جاذب (سایز 2-4 میلیمتر) بدست آمد. حداکثر ظرفیت جذب یون های اورانیوم توسط جاذب تیمار شده با H2O2/MgCl2 در شرایط بهینه حدود 2/42 میلی گرم بر گرم زیست توده خشک است. نتایج نشان داد که پیشتیمار میتواند روش مناسبی در جهت افزایش ظرفیت جذب جاذبهای زیستی باشد. | ||
کلیدواژهها | ||
اورانیوم؛ پیش تیمار؛ جذب زیستی؛ ضایعات رادیواکتیو؛ فیلتر زیستی | ||
عنوان مقاله [English] | ||
Bio-removal of uranium by the treated biosorbent from aqueous solutions as an efficient strategy in uranium bioremediation | ||
نویسندگان [English] | ||
Nessa Namdarian1؛ Parisa Tajer Mohammad Ghazvini2؛ Akram Sadat Tabatabaee bafroee3 | ||
1Msc.Department of biology, East Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2Assistant Professor. Tehran Nuclear Science and Technology Research Institute | ||
3Department of biology, East Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
The aim of this study was to evaluate the ability of treated Azolla filiculoides to uranium biosorption as a new biosorbent. In this study, uranium biosorption experiments were performed by untreated biomass and [Fe(CN)6]4--treated biomass and H2O2/MgCl2-treated biomass. Studies showed that the maximum uranium uptake capacity by various treated sorbents is pH 5. Freundlich isotherm was examined to evaluate the experimental data. The results showed that the treated sorbent with H2O2/MgCl2 is more efficient than other sorbents and its uranium adsorption is relatively rapid, reaching to the maximum in 60 minutes. Maximum uranium adsorption was obtained using the large adsorbent particles (2-4 mm). The maximum adsorption capacity of uranium ions by H2O2/MgCl2-treated sorbent under optimal conditions is about 42.2 mg /g dry biomass. The results showed that pretreatment can be a good way to increase the adsorption capacity of biosorbents. | ||
کلیدواژهها [English] | ||
Biofilter, Biosorption, Pretreatment, Radioactive Wastes, Uranium | ||
مراجع | ||
Adamson, A. and Gast, A. (1997) Adsorption of gases and vapors on solids. in: Physical chemistry of surfaces, Vol. 210, Wiley, pp. 599-676. Aksu, Z. and Kutsal, T. (1991) A bioseparation process for removing lead (II) ions from waste water by using C. vulgaris. Journal of Chemical Technology & Biotechnology, 52(1), 109-118. Al-Asheh, S. and Duvnjak, Z. (1997) Sorption of cadmium and other heavy metals by pine bark. Journal of hazardous materials, 56(1-2), 35-51. Aryal, M. and Liakopoulou-Kyriakides, M. (2015) Bioremoval of heavy metals by bacterial biomass. Environmental monitoring and assessment, 187(1), 4173. Dushenkov, V., Kumar, P.N., Motto, H. and Raskin, I. (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental science & technology, 29(5), 1239-1245. Ghorbanzadeh Mashkani, S. and Tajer Mohammad Ghazvini, P. (2009) Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption. Bioresource technology, 100 (6), 1915-1921. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y. and Chen, J. (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource technology, 101(22), 8599-8605. Jalali-Rad, R., Ghafourian, H., Asef, Y., Dalir, S., Sahafipour, M. and Gharanjik, B. (2004) Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications. Journal of hazardous materials, 116(1-2), 125-134. Kasra-Kermanshahi, R., Bahrami-Bavani, M. and Tajer-Mohammad-Ghazvini, P. (2019) Microbial clean-up of uranium in the presence of molybdenum using pretreated Acidithiobacillus ferrooxidans. Journal of radioanalytical and nuclear chemistry, 322(2), 1139-1149. Leusch, A., Holan, Z.R. and Volesky, B. (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 62(3), 279-288. Leusch, A., Holan, Z.R. and Volesky, B. (1997). Solution and particle effects on the biosorption of heavy metals by seaweed biomass. Applied biochemistry and biotechnology, 61(3), 231-249. Liu, L., Liu, J., Liu, X., Dai, C., Zhang, Z., Song, W. and Chu, Y. (2019) Kinetic and equilibrium of U (VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of environmental radioactivity, 203, 117-124. Lu, Y. and Wilkins, E. (1996) Heavy metal removal by caustic-treated yeast immobilized in alginate. Journal of hazardous materials, 49(2-3), 165-179. Prakash, D., Gabani, P., Chandel, A.K., Ronen, Z. and Singh, O.V. (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microbial Biotechnology, 6(4), 349-360. Prusty, P.K. and Satapathy, K.B. (2020) Phytoremediation of Waste Water by Using Azolla-Anabaena Consortium and Its Aquatic Associates: A review. Plant Archives, 20, 1933-1943. Vanhoudt, N., Vandenhove, H., Leys, N. and Janssen, P. (2018) Potential of higher plants, algae, and cyanobacteria for remediation of radioactively contaminated waters. Chemosphere, 207, 239-254. Vijayaraghavan, K. and Balasubramanian, R. (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. Journal of environmental management, 160, 283-296. Vijayaraghavan, K. and Yun, Y.-S. (2008) Bacterial biosorbents and biosorption. Biotechnology advances, 26(3), 266-291. Volesky, B. (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2-3), 203-216. Yang, J. and Volesky, B. (1999) Biosorption of uranium on Sargassum biomass. Water Research, 33(15), 3357-3363. Yasmin, S., Barua, B.S., Uddin Khandaker, M., Kamal, M., Abdur Rashid, M., Abdul Sani, S.F., Ahmed, H., Nikouravan, B. and Bradley, D.A. (2018) The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach aشrea, Chittagong, Bangladesh: Geological characteristics and environmental implication. Results in Physics, 8, 1268-1274.
| ||
آمار تعداد مشاهده مقاله: 399 تعداد دریافت فایل اصل مقاله: 276 |