تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,653 |
تعداد مشاهده مقاله | 12,496,593 |
تعداد دریافت فایل اصل مقاله | 8,887,244 |
بررسی برخی تغییرات فیزیولوژیکی و بیوشیمیایی در سه رقم انگور (Viis vinifera L.) در پاسخ به تنش خشکی | ||
زیست شناسی کاربردی | ||
مقاله 4، دوره 34، شماره 3 - شماره پیاپی 69، آبان 1400، صفحه 58-81 اصل مقاله (580.92 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2021.31265.1370 | ||
نویسندگان | ||
اسحق شمسی پور1؛ محمد علی اعظمی* 2؛ محمد باقر حسنپور3 | ||
1دانشجوی کارشناسی ارشد گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه | ||
2استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه | ||
3پژوهشگر ارشد مرکز پژوهشهای مجلس شورای اسلامی | ||
چکیده | ||
جهت بررسی اثرات تنش خشکی بر سه رقم انگور (قزل اوزوم، خلیلی، پرلت) آزمایشی در قالب طرح کاملا تصادفی با چهار تکرار انجام گرفت. گیاهان انگور در چهار سطح تنش خشکی شامل شاهد، 40، 60 و 80 درصد ظرفیت زراعی رشد کردند. فاکتورهای مورفولوژیکی شامل وزن تر و وزن خشک گیاه و ویژگی های فیزیولوژیکی شامل محتوای پرولین، نشت الکترولیت، محتوای پراکسید هیدروژن و مالون دی آلدهید و فعالیت آنزیمی کاتالاز، آسکوربات پراکسیداز و گایاکول پراکسیداز مورد بررسی قرار گرفتند که سطوح مختلف معنی داری را نشان دادند. بیشترین میزان نشت الکترولیت و پراکسید هیدروژن در رقم خلیلی و سطح 40% تنش خشکی بود. رقم قیزیل اوزوم در تنش 60% بالاترین میزان پروتئین، آنزیم آسکوربات پراکسیداز، کاتالاز، گایاکول پراکسیداز و کمترین محتوای مالون دی آلدهید را نشان داد. در بررسی پارامترهای فلورسانس کلروفیل شامل فلورسانس حداقل (Fo)، فلورسانس متغیر (Fv)، فلورسانس حداکثر (Fm)، کارایی فتوشیمیایی موثر (YII)، حداکثر کارایی فتوسیستم II (Fv/fm)، کارایی کوانتومی غیرفتوشیمیایی تنظیم نشده فتوسیستم IIو (NO)Y تا سطح 60% تنش خشکی روند افزایش معنی داری در رقم قیزیل اوزوم به تنش خشکی مشاهده گردید. | ||
کلیدواژهها | ||
آنزیم های آنتی اکسیدان؛ انگور؛ تنش خشکی؛ پرولین؛ فلورسانس کلروفیل | ||
عنوان مقاله [English] | ||
Evaluation some of the physiological and biochemical changes in three grapevine cultivars (Vitis vinifera L.) in response to drought stress | ||
نویسندگان [English] | ||
Eshagh shamsinow1؛ Mohammad Ali Aazami2؛ Mohamad Bagher Hasanpoor3 | ||
1M.SC.Gharwa Uloom Baghbani, Daneshgah Kashawarzi, Daneshgah Maragheh, Maragheh | ||
2Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture, Maragheh University, Maragheh | ||
3Senior Researcher of Islamic Council Research Center | ||
چکیده [English] | ||
In this study evaluate the effects of grapes cultivar on tolerance of vitis vinifera grown in drought stress conditions. Plants were grown in pots and exposed to 0, 40, 60 and 80 percent of fild capacity drought stress with three different cultivars (perlet, khaliliand ghizil ouzum). The physiological parameters such as MDA, H2O,EC and morphological paramaters such as dry and fresh weight and chlorophyll fluorescence Fo,Fv, Fm, Fv/Fm, Y(II) Y(NO) the contents of chlorophyll a, chlorophyll b, and enzyme activities of (APX, GPX, and CAT) and prolin content and protein percent were determined. Grapes cultivars positively (ghizil ouzum) affected on growth and physiology statistically. The highest, proline content was significantly different under drought stress condition and ghizil ouzum treatments so that, enzyme activities of (APX, GPX, and CAT) are increased with enhancement of drought levels .interaction effects of drought and cultivars in CAT, APX and GPX activity were significantly different compared with control and increased with enhancement of stress levels so that most of the activity was in 60% fc concentration and ghizil ouzum cultivar. The amount of chlorophyll fluorescence parameters (Fm, and Fv, Fv/Fm, Yll, Y(N0) were significant changes in drought stress treatment and ghizil ouzum in 60% FC compared with control. | ||
کلیدواژهها [English] | ||
Antioxidant enzymes, Chlorophyll fluorescence, drought stress, grape, prolin | ||
مراجع | ||
Abid, G., Ouertani, R.N., Muhovski, Y., Jebara, S.H., Hidri, Y., Ghouili, E. and Jebara, M. (2020). Variation in antioxidant metabolism of faba bean (Vicia faba) under drought stress induced by PEG reveals biochemical markers associated with antoxidant defense. Plant Biosystems, 9:1-12. Alston, J.M. and Sambucci, O. (2019). Grapes in the world economy. 1th edn. Springer, Cham, 365 Pp. Bern. Alzahrani, S.M., Alaraidh, I.A., Migdadi, H., Alghamdi, S., Khan, M.A. and Ahmad, P. (2019). Physiological, biochemical, and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pakistan Journal of Botany, 51: 786–798. Amini, Z., Moalemi, N. and Saadati, S. (2014). Effects of water deficit on proline content and activity of antioxidant enzymes among three olive (Olea europaea L.) cultivars. Journal of Plant Research, 27(2): 156-167. Amirjani, M.R. (2010). Effects of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Physiology, 5:350-360. Bates, L.S., Waldern, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205- 207. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein – dye binding. Analytical Biochemistry, 72: 248-254. De Oliveira, W. F., dos Santos, S., Marcelino, P., Breitenbach Barroso Coelho, L. C., dos Santos, C.and Tereza, M. (2018). Plant Antioxidants and Mechanisms of Action. Letters in Drug Design & Discovery, 15(10): 1103-1115. Dezar, C.A., Gago, G.M., González, D.H. and Chan, R.L. (2005). Hahb-4, a sunflower Homeobox-Leucine Zipper gene, confers drought tolerance to Arabidopsis thaliana plants. Transgenic Research, 14: 429-440. Dodd, I. C. (2005). “Root-to-Shoot Signalling: Assessing the Roles of ‘Up’ in the Up and Down World of Long-Distance Signalling in Planta,. Plant and Soil, 274 (1-2): 251-270 Escalona, J.M., Fuentes, S., Tomás, M., Martorell, S. and Flexas J. (2013). Responses of leaf night Transpiration to drought stress in Vitis vinifera L. Agricultural water management, 118:50-58. Gambetta, G.A.,Herrera, J.C., Dayer, S., Feng, G., Hochberg, U. and Castellarin, S. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16): 4658–4676. Gao, W., Feng, Z., Bai, Q., He, J. and Wang, Y. (2019). Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. International Journal of Molecular Sciences, 20(5): 1176-1181. Gou, J., Strauss, S.H. and Tsai, C.J. (2010). Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell, 22: 623-639. Hao, H., Xiao, W. and Fashui, H. (2012). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological trace Element Research, 119(1): 68-76. Hare, P.D., W.A. Cress and J. van Staden. 1997. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regulat, 23:79–103. Hasanuzzaman, M., Nahar, K., Hossain, M., Anee, T.I., Parvin, K. and Fujita, M. (2017). Nitric oxide pretreatment enhances antioxidant defense and glyoxalase system to confer PEG-induced oxidative stress in rapeseed. Journal of Plant Interactions, 12(1): 323-331. Hasanuzzaman, M., Bhuyan, M., Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A. and Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8: 384-396. Health, R.L. and Packer, L. (1968). Photo peroxidation in isolated chloroplast.I.Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biophysics, 125: 189-198. Hogland, D.R. and Arnon, D.I. (1950). The water-culture method for growing plants with soil. California Agriculture Experiment Station Circular, 374: 1-32. Hosseini, N.S., Hagh, Z.G., and Koshghalb, H. (2020). Morphlogical, antioxidant enzyme activity and secondary metabolites accumulation in response of polyethylene glycol-induced osmotic stress in embryo-derived plantlets and callus culture of Salvia leriifolia. Plant Cell, Tissue and Organ Culture, 140(1): 143-155. Huang, L.J., cheng, G.X., Khan, A., Wei, A.M., Yu, Q.H., Yang, S.B. and Gong, Z.H. (2019). CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. Protoplasma, 256(1): 39-51. Kafi, M., Nabati, J., Masoumi, A. and Zare Mehrgerdi, M. (2011). Effect of salinity and silicon application on oxidative damage of sorghum (Sorghum bicolor (L.) moench. Pakistan Journal of Botny, 43(5): 396-404. Karimi Alvije, M., Abadi, A., Musavi, S.A. and Salami, S.A. (1994). Investigation of changes in catalase, peroxidase and total protein enzymes in response to cold stress in some grape cultivars. Iranian Journal of Horticultural Science, 1(29): 103-110. (In Farsi) Khan, M.S. (2011). The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnology & Biotechnological Equipment, 25 (3):2433-2442. Kim, T.-H., Böhmer, M. and Huet, H. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61: 561-591. Kumar, R.R., Karajol, K., and Naik, G.R. (2011). Effect of PEG induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Research in Science and technology, 15(6): 256-262. Lata, C. and Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal Experimental Botany, 62: 4731-4748. Lovisolo C., Perrone, I. A., Carra, A., Ferrandino, J., Flexas, H., Medrano, F. and Schubert, A. (2010). “Drought-Induced Changes in Development and Function of Grapevine (Vitis spp.) Organs and in Their Hydraulic and Non-Hydraulic Interactions at the Whole-Plant Level. Functional Plant Biology, 37(3): 98-116. Ma, Y.Y., Zhang, Y.L., Shao, H. and Lu, J. (2010). Differential physio‐biochemical responses to cold stress of cold‐tolerant and non‐tolerant grapes (Vitis L.) from China. Journal of Agronomy and Crop Science, 196(3): 212-219. Ma, Y., Qin, F. and Tran, L.S. (2012). Contribution of genomics to gene discovery in plant abiotic stress responses. Molecular Plant, 5 (6):1176-1178. Majdi, M., Karimzadeh, G. and Mahfuzi, S. (2007). Effect of Low Temperature and External Calcium on the Quantum Efficiency of Photosystem 2 (Fv / Fm) and Chlorophyll Levels in Sensitive Wheat Varieties Cold. Research Construction, 77(20): 175-181. (in Farsi). Mehri, H., Ghbadi, C., Baninasab, B., Ehsanzadeh, P. and Gholami, M. (2015) Evaluation of some physiological and morphological responses of four Iranian grapevine (Vitis vinifera L.) cultivars to drought stress under in vitro conditions. Journal of Plant Process and Function, 3(10): 115-126. Mehta, P., Jajoo, A., Mathur, S. and Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant physiology and biochemistry, 48(1): 16-20. Mittova, V., Tal, M., Volokita, M. and Guy, M. (2003). Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environment, 26:845-856. | ||
آمار تعداد مشاهده مقاله: 560 تعداد دریافت فایل اصل مقاله: 261 |