تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,494,352 |
تعداد دریافت فایل اصل مقاله | 8,885,749 |
مقاله پژوهشی: ارائه مدل ترکیبی الگوریتم مورچگان باینری و ماشین بردار پشتیبان (BACO-SVM) برای انتخاب ویژگی و طبقهبندی مشتریان بانکی به همراه مطالعه موردی | ||
راهبرد مدیریت مالی | ||
مقاله 7، دوره 8، شماره 2 - شماره پیاپی 29، تیر 1399، صفحه 71-92 اصل مقاله (1013.85 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2020.20531.1678 | ||
نویسندگان | ||
علی حسین زاده کاشان* 1؛ فاطمه گروسی2 | ||
1دانشیار دانشکده مهندسی صنایع و سیستمها، دانشگاه تربیت مدرس، تهران، ایران | ||
2فارغالتحصیل رشته کارشناسی ارشد مهندسی مالی، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
یکی از مهمترین مسائلی که همواره بانکها و موسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری میباشد. رقم قابل توجه مطالبات معوق بانکها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن میباشد. از این رو تاکنون تلاشهای بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقهبندی هر چه دقیقتر متقاضیان تسهیلات اعتباری صورت گرفته است. در این راستا، پژوهش حاضر سعی در ارائه رویکردی نو برای ارزیابی ریسک اعتباری مشتریان بانکی دارد. روش ماشین بردار پشتیبان (SVM) به عنوان طبقهبندی کنندهی اصلی با یک روش انتخاب ویژگی به نام الگوریتم مورچگان باینری (BACO-SVM) ترکیب میگردد. به منظور نشان دادن اثر بخشی روش پیشنهادی از دادههای مربوط به 85 شرکت از تسهیلات گیرندگان حقوقی یک بانک ایرانی در یک بازهی 5 ساله (1389-1393) به همراه 16 ویژگی مربوط به هر یک از آنها استفاده نمودهایم. نتایج روش BACO-SVM با روش PSO-SVM، GA-SVM و روش SVM به تنهایی مقایسه گردیده است. یافتههای پژوهش دلالت بر آن داشته که در ارزیابی ریسک اعتباری، مدل BACO-SVM نسبت به روشهای دیگر از عملکرد خوبی برخوردار است. در نتیجه با استفاده از روش BACO-SVM به طبقهبندی مشتریان به دو گروه مشتریان خوشحساب و بدحساب میپردازیم. و در نهایت جهت افزایش انعطافپذیری در تصمیمگیری، مشتریان خوشحساب را با استفاده از روش VIKOR رتبهبندی میکنیم. این رتبهبندی منجر به آن میشود که قضاوت دقیقتری دربارهی وضعیت ریسک اعتباری متقاضیان خوشحساب صورت گیرد. | ||
کلیدواژهها | ||
ریسک اعتباری؛ رتبه بندی اعتباری؛ ماشین بردار پشتیبان؛ انتخاب ویژگی؛ الگوریتم بهینه سازی مورچگان باینری | ||
عنوان مقاله [English] | ||
Hybrid Model Binary ant ColonyAlgorithm and Support Vector Machine (BACO-SVM) for Feature Selection and Classification of Bank Customers with Case Study | ||
نویسندگان [English] | ||
Ali Husseinzadeh Kashan1؛ Fatemeh Garoosi2 | ||
1Associate Professor of Industrial Engineering, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran | ||
2MSc Graduate of Financial Engineering, Tarbiat Modares University, Iran | ||
چکیده [English] | ||
One of the most important issues faced by banks and financial institutions is the issue of credit risk. The significant amount of deferred bank claims around the world indicates the importance of this issue and the need to pay attention to it. So far, many efforts have been made to provide an effective model for evaluating and classification credit applicants as accurately as possible. In this regard, the present study attempts to provide a new approach for assessing the credit risk of bank customers. The support vector machine(SVM) method is combined as the main classifier of banking customers, with a feature selection method called the Binary Ant Colony Optimization Algorithm(BACO-SVM). In order to demonstrate the effectiveness of the proposed method, we used data from 85 companies from legal recipients of facilities of an Iranian bank in a 5 year interval (1393-1893) along with 16 characteristics related to each of them. The results of the BACO-SVM method have been compared with the PSO-SVM, GA-SVM, and SVM method. The results of the research indicated that BACO-SVM model has better performance in assessing credit risk rather than other methods. As the result, using the BACO-SVM method, we classify customers into two groups of good and bad account customers. Finally, in order to increase the flexibility in decision making, we will rank our good account customers with the VIKOR method. This rating will lead to a more accurate assessment of the credit risk situation of good account applicants. | ||
کلیدواژهها [English] | ||
Credit Risk, Credit Rating, Support Vector Machine, Feature Selection, Binary ACO | ||
مراجع | ||
- پویانفر، ا. فلاحپور، س. عزیزی، م. 1392. رویکرد حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک جهت تخمین رتبه اعتباری مشتریان بانکها. مجله مهندسی مالی و مدیریت اوراق بهادار، شماره 17. - تقوی، م.؛ نادعلی، ا. 1391. طبقهبندی متقاضیان تسهیلات اعتباری بانکی با استفاده از دادهکاوی و منطق فازی. فصلنامه علمی پژوهشی مطالعات مدیریت صنعتی، شماره 25, صفحات. 85-107. - توحیدی، ح. نظامآبادی پور، ح. سریزدی، س. 1386. انتخاب ویژگی با استفاده از الگوریتم جمعیت مورچگان باینری. اولین کنگره فازی و سیستمهای هوشمند، دانشگاه فردوسی مشهد، صص.269-275. - حاتمی خواه ن.1392. بررسی روشهای مبتنی بر انتخاب ویژگی. دانشگاه صنعتی مالک اشتر، مجتمع ICT 5 - سپهردوست، ح.؛ برجیسیان، ع. 1392. برآورد احتمال نکول تسهیلات پرداختی بانک با استفاده از رگرسیون لاجیت. فصلنامه علمی پژوهشی برنامهریزی و بودجه، صفحات. 31-52. - صفری، س. ابراهیمی، م.؛ شیخ، م. 1389. مدیریت ریسک اعتباری مشتریان حقوقی در بانکهای تجاری با رویکرد تحلیل پوششی دادهها. پژوهشهای مدیریت در ایران. - عرب مازار، ع.؛ رویین تن، پ. 1385. ریسک اعتباری مشتریان بانکی مطالعه موردی بانک کشاورزی. دو فصلنامه علمی پژوهشی جستارهای اقتصادی. - فلاحپور، س. راعی، ر.؛ هندیجانی زاده، م. 1393. رویکرد شبکه عصبی مصنوعی مبتنی بر کلونی زنبورعسل مصنوعی جهت تخمین رتبه اعتباری مشتریان بانکها. - فلاحپور، س. نوروزییان لکوان، ع.؛ هندیجانی زاده، 1396. کاربرد روش ترکیبی ماشین بردار پشتیبان و انتخاب ویژگی بهمنظور پیشبینی درماندگی مالی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران. نشریهی تحقیقات مالی، دوره 19 شماره 1 - نیلی، م.؛ سبزواری، ح. 1387. برآورد و مقایسه مدل درجهبندی اعتباری لاجیت با روش تجزیهوتحلیل سلسله مراتبی (AHP). مجله علمی پژوهشی شریف، صفحات. 105-117. - ALTMAN, E. I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23, 589-609. - POUYANFAR, A. FALLAHPOUR, SA.؛ AZIZI, M.2013. Genetic Algorithm Based on Genetic Algorithm for Least Squares Approach to Estimating Credit Rating of Bank Clients. Journal of Financial Engineering and Securities Management, No. 17. (in Persian) - CALEND,AR. NADALI, A. 2012. Classification of Bank Credit Facility Applicants Using Data Mining and Fuzzy Logic. Journal of Industrial Management Studies, No. 25, Pages. 85-107. (in Persian) - TAWHIDI, H. NIZAM ABADIPOUR, H. SERIZADI, Q. 2007. Feature selection using binary ant population algorithm. First Congress on Fuzzy and Intelligent Systems, Ferdowsi University of Mashhad, pp. 269-275. (in Persian) - HATAMI-EH, No. 2013. Investigation of feature selection methods. Malik Ashtar University of Technology, ICT 5. (in Persian) - WHITEHORSE, H.؛ BERJISSIAN, A. 2013. Estimation of Bank Payment Facility Failure Using Logit Regression. Journal of Planning and Budgeting, Pages. 31-52. (in Persian) - SAFARI, S. EBRAHIMI, M. SHEIKH, M. 2010. Credit Risk Management of Legal Clients in Commercial Banks with Data Envelopment Analysis Approach. Management Research in Iran. (in Persian) - ARAB MAZAR, AS. ROINEN, P. 2006. Credit Risk of Banking Customers A Case Study of Agricultural Bank. Two Economic Research Quarterly. (in Persian) - FALLAHPOUR, S. RAEI, R. HENDIJANI ZADEH, M. 2014. Artificial Bee Colony-Based Neural Network Approach for Estimating Credit Rating of Bank Clients. (in Persian) - FALLAHPOUR, S. NOROUZIAN LAKVAN, AS. HENDIJANI ZADEH,2017. Application of the Support Vector Machine Combined Method and Feature Selection to Predict the Financial Misery of Companies Listed in Tehran Stock Exchange. Journal of Financial Research, Volume 19 Number 1. (in Persian) - NILI, M.؛ SABZEVARI, H. 2008. Estimation and Comparison of the Logit Credit Rating Model with AHP. Sharif Scientific Journal, Pages. 105-117. (in Persian) - ANGILELLA, S. & MAZZU, S. 2015. The financing of innovative SMEs: A multicriteria credit rating model. European Journal of Operational Research, 244, 540-554. Applications. 37,pp.4902-4909. - AVCI. ENGIN. (2009). Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm- support vector machines. Expert systems with applications, pp.1391-1402. - BEAVER, W. (1967). Financial ratios as Predicators of Failure. Journal of Acounting Resarch. - BELLOTTI, T. AND CROOK, J. 2009. Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications,36(2), pp.3302-3308. - BOZ, O, 2002. Feature Subset Selection by Using Sorted Feature Relevance. ICMLA, pp.147-153. - BURGES, C. (1998). tutorial on support vector machines for patternrecognition. Data Mining and Knowledge Discovery, 121-167. - CHEN. L, LI. C, 2010. Combination of feature selection approaches with SVM in credit scoring. Expert Systems with Applications.37,4902-4909.CORTES, C. V.(1995). Support-vector networks. Machine Learning. pp.273-297. - FISHER, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, pp.179-188. - HARRIS, T. 2015. Credit scoring using the clustered support vector machine. Expert Systems with Applications, 42, 741-750. - HIROYASU, T. MIKI, M. ONO, Y. AND MINAMI, Y. 2000. Ant colony for continuous functions. The Science and Engineering, Doshisha University, 20. - HUANG, Z. CHEN, H. HSU, C. J. CHEN, W. H. & WU, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, pp.543-558. - LEAN, Y. XIAO, Y. SHOUYANG, W. A. & K.K. L. (2011). Credit risk evaluation using least squares SVM classifier with design of experiment for parameter selection. Expert Systems with Applications, 1 pp.5392-15399. - LI, K. NISKANEN, J. KOLEHMAINEN, M. & NISKANEN, M.2016,Financial innovation: Credit default hybrid model for SME lending. Expert Systems with Applications, 61, pp.343-355. - ÖZBAKIR, L. BAYKASOĞLU, A. KULLUK, S. AND YAPICI, H.2009. TACO-miner: An ant colony based algorithm for rule extraction from trained neural networks. Expert Systems with Applications, 36(10), pp.12295-12305. - OZTURK, H. NAMLI, E. & ERDAL, H. I. 2016. Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample. Economic Modelling, 54, pp.469-478. - TABAKHI. S, MORADI. P, AKHLAGHIAN. F, 2014. An unsupervised feature selection algorithm based on ant colony optimization.Engineering Applications of Artificial Intelligence.32,112-123. pp.335-345 - ZHANG, Z. GAO, G. & SHI, Y. 2014. Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors. European Journal of Operational Research,237, pp.335-345. | ||
آمار تعداد مشاهده مقاله: 805 تعداد دریافت فایل اصل مقاله: 675 |