تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,494,401 |
تعداد دریافت فایل اصل مقاله | 8,885,779 |
مقاله پژوهشی: برآورد سنجه های ریسک زیان نقدینگی در بانکهای تجاری با استفاده از فرآیندهای تصادفی | ||
راهبرد مدیریت مالی | ||
مقاله 3، دوره 8، شماره 2 - شماره پیاپی 29، تیر 1399، صفحه 1-22 اصل مقاله (1.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2019.25060.2006 | ||
نویسندگان | ||
محمدرضا دهقانی احمدآباد* 1؛ مهدی سعیدی کوشا2 | ||
1دکتری تخصصی مالی (گرایش بانکداری)، دانشکده مدیریت، دانشگاه تهران، تهران، ایران | ||
2استادیار گروه مدیریت مالی، دانشکده علوم مالی، دانشگاه خوارزمی، تهران، ایران | ||
چکیده | ||
نقدینگی به مانند شریان اصلی بانکهای تجاری برای بقا و ادامه فعالیت می باشد. از اینرو، اندازه گیری و مدیریت کردن ریسک نقدینگی اهمیت فراوانی دارد که این مهم پس از بحران 2008 دو چندان شده است. این پژوهش با تعریف شاخص نیاز نقدینگی که خود تابعی از تغییرات حجم داراییها و بدهیهای بانک می باشد، به کمی سازی ریسک زیان نقدینگی پرداخته است. هدف اصلی، برآورد ارزش در معرض خطر (VaR) و ارزش در معرض خطر شرطی (cVaR) زیان ناشی از ریسک نقدینگی در یکی از بانکهای تجاری منتخب برای دوره زمانی یکساله آتی با استفاده داده های آذر 1390 لغایت مرداد 1395 بوده است. جهت کمی سازی زیان ریسک نقدینگی، ابتدا نیاز نقدینگی بانک با مدلهای فرآیند تصادفی پیش بینی و سناریوسازی شده است و آن دسته از سناریوها که منجر به کسری نقدینگی شده اند، محاسبه گردیده و سپس این کسری با اقدامات جبرانی بانک مبنی بر فروش بخشی از دارایی های خود، جبران گردیده که زیان حاصل از فروش کمتر از قیمت واقعی به عنوان متغیر تصادفی ریسک زیان نقدینگی در نظر گرفته شده است و بر اساس توزیع آن ارزش در معرض خطر معرفی شده است. این پژوهش نشان داده است، فروش بهینه داراییها می تواند صرفه جویی اقتصادی قابل توجهی برای بانک منتخب به همراه داشته باشد و رقم Var ریسک نقدینگی از مبلغ 1،111 به 989 میلیارد ریال کاهش پیدا کرده است. | ||
کلیدواژهها | ||
ریسک نقدینگی؛ نیاز نقدینگی؛ فرآیند های تصادفی؛ ارزش در معرض خطر | ||
عنوان مقاله [English] | ||
Liquidity Risk Loss Estimation in Commercial Banks Using Stochastic Process Approach | ||
نویسندگان [English] | ||
MohamadReza Dehghani Ahmadabad1؛ Mahdi Saeidi Kousha2 | ||
1Ph.D. of Finance (Banking), Faculty of Management, University of Tehran, Tehran, Iran | ||
2Assistant Professor, Financial Management Department, Faculty of Finance Science, Kharazmi University, Tehran, Iran | ||
چکیده [English] | ||
Liquidity is such vital for commercial banks to survive and continue to operate, hence measuring and managing liquidity risk is very important for them and this has become more important after the 2008 crisis. This study, by defining the liquidity need index, which itself is a function of changes in the volume of bank assets and liabilities, has quantified the loss of liquidity risk. The main objective is to estimate the value of risk (VaR) and conditional value of risk (cVaR) as measure of liquidity risk losses in in one of the selected commercial banks for the next one-year period, using data from December 2011 to August 2016 . To quantify the risk of liquidity, first, the bank's liquidity needs are predicted by stochastic process models and then, those scenarios that lead to a liquidity deficit are calculated. This deficit is compensated by the sale of part of bank’s assets and the loss from sales below the real price is considered as a measure for liquidity risk losses and VaR and cVaR are calculated through this meaure’s distribution. This research has shown that optimal assets sale can bring significant economic savings to the bank and liquidity risk VaR decreases from 1,111 to 989 billion rials. | ||
کلیدواژهها [English] | ||
Liquidity Risk, Liquidity Needs, Stochastic Process, Value at Risk (VaR) | ||
مراجع | ||
- خداویسی، ح. ا. ملابهرامی. 1391. مدلسازی و پیشبینی نرخ ارز بر اساس معادلات دیفرانسیل تصادفی. تحقیقات اقتصادی. 47: 129-144. - فلاحپور، س؛ و. مطهری نیا. 1396. مدلسازی و پیشبینی نوسان تحققیافته با در نظر گرفتن پرش در بورس اوراق بهادار تهران. مهندسی مالی و مدیریت اوراق بهادار. 32، صص. 171 - 190. - کفایی، س.م. م. راهزانی. 1396. بررسی تأثیر متغیرهای کلان اقتصادی بر ریسک نقدینگی بانکهای ایران. پژوهشها و سیاستهای اقتصادی، 18، صص.261-310. - مولایی، ص. م.و. برزانی، س. صمدی. 1395. الگوسازی رفتار قیمت سهام با استفاده از معادلات دیفرانسیل تصادفی با نوسان تصادفی. دانش مالی تحلیل اوراق بهادار. 32، صص.1-13. - مهرآرا، م. ا. بهلولوند. 1395. بررسی عوامل مؤثر بر ریسک نقدینگی در صنعت بانکداری مبتنی بر رویکرد بیزین: مطالعه موردی بانکهای ایران. پژوهشنامه اقتصاد کلان. 22، صص.13-37. - یزدان پناه، ا. س. شکیب حاجیآقا. 1388. عوامل مؤثر بر ریسک نقدینگی بانکها (مطالعه موردی بانک ملت). دانش مالی تحلیل اوراق بهادار. 3، صص.27-54. - Adam, A. J.P. Laurent and C. Rebérioux, (2004). How should we hedge deposit accounts? Banque et Marchés. - Bai, J. A. Krishnamurthy, and C.H.Weymuller, (2014). Measuring liquidity mismatch in the banking sector. Journal of Finance, 73(1):51-93. - Banks, E. 2014. Liquidity Risk - Managing Funding and Asset Risk, second edition, global financial markets. Global Financial Markets series. Palgrave Macmillan UK. - Baumol, W. 1952. The Transactions Demand for Cash: An Inventory Theoretic Approach. The Quarterly Journal of Economics, 66(4):545-556. - Becerra, S & Claeys, G & Martínez, J.F. 2016. A new liquidity risk measure for the Chilean banking sector. Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 19 (3), pp.26-67. - Brigo D. A. Dalessandro, M. Neugebauer, and F. Triki. 2007. A stochastic processes toolkit for risk management. Working Paper, King's College London, November. - Choudhry Moorad. 2011. An introduction to banking: liquidity risk and asset-liability management.1st Edition. John Wiley. - Chowdhury, M.M. S. Zaman. And M.A. Alam. 2019. Liquidity Risk Management of Islamic Banks in Bangladesh. International Journal of Business and Technopreneurship. Vol 9(1):37-48. - Cox, J.C. J.E. Ingersoll and S.A. Ross. 1985. A Theory of the Term Structure of Interest Rates. Econometrica 53, pp.385–407 - Daellenbach, H. 1974. Are Cash Management Optimization Models Worthwhile? Journal of Financial and Quantitative Analysis, 9(4) , pp.607-626. - Elahi, M. 2017. Factors Influencing Liquidity in Leading Banks “A Comparative Study of Banks Operating in UK and Germany Listed on LSE”. Imperial Journal of Interdisciplinary Research (IJIR) Vol-3, Issue-2 - Fallahpour, S. and V. Motaharinia. 2017. Including Jump Components in Modeling and Forecasting Realized Volatility: Evidence from Tehran Stock Exchange. Financial Engineering and Portfolio Management, 32, pp.171-190. (In Persian) - Frauendorfer, K. and M. Schürle. 2005. Dynamic modelling and optimization of non-maturing accounts. Working Papers Series in Finance Paper. No. 43. - Hinderer K. and K.H. Waldmann. 2001. Cash management in a randomly varying environment. European Journal of Operational Research, 130(3) , pp.468–485 - Howells, P. and K. Bain. 1999. The Economics of Money, banking and Finance, a European Text. Essex CM20 2JE, England: Pearson Education Limited, Edinburgh Gate, Harlow. - Jarrow, R. and D. Van Deventer. 1998. The arbitrage-free valuation and hedging of demand deposits and credit cards loans. Journal of banking and finance 22, pp.249-272. - Kafaie, M. and M. Rahzani. 2017. The Effect of Macroeconomic Variables on Banks’ Liquidity Risk in Iran. Quaterly Journal of Economic Research and Policies, 25(81) , pp.261-310. (In Persian) - Kalkbrener, M. and J. Wiling, (2004). Risk management of non-maturing liabilities. Journal of Banking and Finance. 28, pp.1547-1568. - Khodavaisi, H. and A. Molabahrami. 2013. Modeling and Prediction Iranian Exchange Rate Based on Stochastic Differential Equations. Journal of Economic Research, 47, pp.129-144. (In Persian) - Kimathi, A. R. Mugo, D. Njeje and K. Otieno. 2015. Factors Affecting Liquidity Risk Management Practices in Microfinance Institutions in Kenya. Journal of Economics and Sustainable Development. Vol.6, No.4 - Lastukova, J. 2016. Liquidity Determinants of the Selected Banking Sectors and their Size Groups. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(3) , pp.971–978. - Liu, B. and C. Xin. 2008. An online model for managing cash: an alternative approach to the Miller-Orr model. In: 2013 international conference on computing, networking and communications (ICNC). pp.314-317 - Loebnitz, K. and B. Roorda. 2011. Liquidity Risk Meets Economic Capital and RAROC. Available at SSRN:https://ssrn.com/abstract=1853233. - Marozva, G. 2017. An empirical study of liquidity risk embedded in banks' asset liability mismatches (Doctoral dissertation). University of South Africa, Pretoria. - Matz, L. and P. Neu. 2007. Liquidity Risk Measurement and Management - A practitioner’s guide to global best practices. Wiley. 1.2. - Mehrara, M. and E. Bohloolvand. 2017. The Study of Effective Factors on Liquidity Risk in the Banking Industry Based on the Bayesian Approach: (Case Study Iranian Banks). Iranian Economic Journal: Macroeconomics (IEJM), 22, pp.13-37. (In Persian) - Melo M. and F. Bilich. 2013. Expectancy balance model for cash flow. Journal of Economics and Finance, Springer; Academy of Economics and Finance, vol. 37(2) , pp.240-252. - Miller, M. and D. Orr. 1966. A Model of the Demand for Money by Firms. The Quarterly Journal of Economics, 80(3): 413-435. - Molaei, S. and M.V. Barzani. 2016. Modeling Behavior of Stock Price Using Stochastic Differential Equation with Stochastic Volatility. Financial Knowledge of Securities Analysis, 32, pp.1-13. (In Persian) - Nampala, H. 2009. Stochastic mean-reversion jump diffusion model with multiple mean reversion rates, A master thesis, University of Dar es Salaam. - O'Brien, J. M. 2000. Estimating the Value and Interest Rate Risk of Interest-Bearing Transactions Deposits. FEDS Working Paper No. 00-53. - Perry, D. and W. Stadje. 2000. Risk analysis for a stochastic cash management model. Insurance: Mathematics and Economics. 26, pp.25–36. - Premachandra, I.M. 2004. A Diffusion Approximation Model for Managing Cash in Firms: An alternative approach to the Miller–Orr model. European Journal of Operational Research. 157, pp.218–226. - Schmaltz, C. 2009. A Quantitative Liquidity Model for Banks. Springer. - Selvaggio, R. 1996. Using the OAS methodology to value and hedge commercial bank retail demand deposit premiums, Chapter 12 in Fabozzi and Konishi, ed. The Handbook of A/L Management, Chicago: Probus Publishing, USA. - Tavana, M. A. Abtahi, D. Di Caprio and M. Poortarigh. 2018. An Artificial Neural Network and Bayesian Network model for liquidity risk assessment in banking. Neurocomputing. 275, pp.2525–2554 - Tran T. T. T. Y.T. Nguyen, T.T.H. Nguyen and L. Tran. 2019. The determinants of liquidity risk of commercial banks in Vietnam. Banks and Bank Systems, 14(1), pp.94-110. - Vasicek, O. 1977. An equilibrium characterization of the term structure. Journal of Financial Economics, 5, pp.177–188 - Wójcik-Mazur A. 2019. Analysis of Determinants of Liquidity Risk in Polish Banking Sector. Contemporary Trends and Challenges in Finance. Springer Proceedings in Business and Economics. Springer, Cham - Yazdanpanah, A. and S. Shakib. 2009. Effective factors on banks liquidity risk (Bank mellat case study). Financial Knowledge of Securities Analysis, 3, pp.27-54. (In Persian) | ||
آمار تعداد مشاهده مقاله: 927 تعداد دریافت فایل اصل مقاله: 706 |