تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,493,411 |
تعداد دریافت فایل اصل مقاله | 8,884,966 |
بررسی شاخصهای فیزیولوژیکی و بیوشیمیایی برخی رقمهای سویا تحت تنش کادمیوم | ||
زیست شناسی کاربردی | ||
مقاله 11، دوره 32، شماره 3 - شماره پیاپی 61، آذر 1398، صفحه 159-173 اصل مقاله (733.3 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2020.4421 | ||
نویسندگان | ||
شهلا هاشمی* 1؛ فرشته محمد حسنی2 | ||
1گروه زیست شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2مربی، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران | ||
چکیده | ||
کادمیوم در زمره فلزات سنگین میباشد و غلظت بالای آن سمیت زیادی برای گیاهان و حیوانات دارد. شناسایی گیاهان مقاوم به کادمیوم از جمله سویا، که یکی از گیاهان مهم روغنی محسوب میشود از اهمیت بالایی برخوردار است. در این پژوهش، اثرات تیمار کادمیوم (0، 200 و 400 میکرومولار) بر رشد ریشه و ساقه و محتوای مالوندی-آلدئید، فنلکل، پراکسیدهیدروژن، کلروفیل، آنتوسیانین و فعالیت آنزیم فنیل آلانین آمونیالیاز (PAL) در سه رقم تلار، کاسپین، DPX گیاه سویا گزارش شد. نتایج نشان داد که تیمار کادمیوم باعث کاهش پارامترهای رشد ریشه و ساقه، کلروفیل در تلار، کاسپین، DPX شد که این کاهش در تلار چشمگیرتر بود. میزان آنتوسیانین، فنل و فعالیت آنزیم فنیلآلانینآمونیالیاز در تیمار گیاهان با کادمیوم در سه رقم سویا افزایش یافت. بیشترین محتوای فنل در تیمار 400 میکرومولار کاسپین و DPX بود اما بیشترین محتوای آنتوسیانین در تیمار 400 میکرومولار تلار، کاسپین و DPX مشاهده شد. محتوای پراکسیدهیدروژن در تیمار کادمیوم 400 میکرومولار در ارقام تلار، DPX و کاسپین نسبت به تیمار200 میکرومولار بهترتیب 16، 7، 9 درصد افزایش یافت. محتوای مالوندیآلدئید در هر سه رقم در تیمار 400 میکرومولار کادمیوم نسبت به شاهد، افزایش معنیداری دیده شد. بالاترین محتوای مالوندیآلدئید نیز در تیمار 400 میکرومولار کادمیوم در رقم تلار مشاهده گردید. نتایج این تحقیق نشان داد که رقم تلار تحت تنش کادمیوم حساسیت بیشتری نسبت به رقمهای کاسپین، DPX دارد. بهعبارت دیگر رقمهای کاسپین و DPX مقاومت بالاتری در مقابل سمیت کادمیوم دارند. | ||
کلیدواژهها | ||
کادمیوم؛ سویا؛ پراکسیدهیدروژن؛ آنتوسیانین؛ فنل | ||
عنوان مقاله [English] | ||
Study of physiological and biochemical parameters of some soybean (Glycine max) varieties (Telar, DPX, Caspian) under cadmium stress | ||
نویسندگان [English] | ||
shahla hashemi1؛ Fereshteh Mohamadhasani2 | ||
1Biology Department, Faculty of Science, Shahid Bahonar University of Kerman, Iran | ||
2Instructor, Department of Biology, Payame Noor University, Tehran, Iran | ||
چکیده [English] | ||
In the current study, the effect of different concentrations of cadmium (0, 200, 400μM) on root and shoot growth, malondialdehyde (MDA), total phenol, hydrogen peroxide (H2O2), chlorophyll and anthocyanin contents, phenylalanine ammonia lyase (PAL) activity were investigated in three varieties of soybean plant (Telar, DPX, Caspian). The results showed that Cd treatment caused reduction of root and shoot biomass, chlorophyll a content in all three cultivars with the highest reduction in Telar. Significant increase in total phenolics and anthocyanin contents and PAL activity was observed in all the three soybean cultivars with the Cd treatment. The content of MDA in all three cultivars was significantly increased in 400µM concentration of Cd treatment as compared to control. The results of this study indicated that Telar cultivar was the most sensitive cultivare to cadmium stress compared with Caspian and DPX cultivars. | ||
کلیدواژهها [English] | ||
cadmium, soybean, H2O2, anthocyanin, phenol | ||
مراجع | ||
Abuajah, C. I., Ogbonna, A. C. and Osuji, C. M. (2015). Functional components and medicinal properties of food: a review. Journal of Food Science and Technology, 52: 2522-2529. Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24: 1337-1344. Aydinalp, C. and Marinova, S. (2009). The effects of heavy metals on seed germination and Plant growth on alfalfa plant (Medicago sativa). Bulgarian Journal of Agricultural Science, 15: 347-350. Benavides, M. P., Gallego, S. M. and Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17: 21-34. Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li. G., Chen, Z., Chen, J. and Wei, K. (2007). Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 67: 2082- 2088. Dai, L.P., Xing, Z.T., Huang, Y. and Li, M.J. (2006). Cadmium induced changes in pigments, total phenolics and phenylalanine ammonialyase activity in fronds of Azolla imbricate. Environmental Toxicology, 505-512 Egert, M. and Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48: 43-48. Finnegan, P.M. and Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in physiology, 3: 1-18. Greger, M. and Lofstedt, M. (2004). Comparison of Uptake and Distribution of Cadmium in Different Cultivars of Bread and Durum Wheat. Crop Science, 44: 501–507. Guo, P., Cao, Y., Li, Z., and Zhao, B. (2004). Role of an endogenous nitric oxide burst in the resistance of wheat to stripe rust. Plant, Cell and Environment, 27: 473-47 Hahlbrock, K. and Ragg, H. (1975). Light-induced changes of enzyme activities in parsley cell suspension cultures. Archive Biochemistry Biophysics, 166: 41–46. Heath, R.L and Packer, L. (1968). Photoperoxidation in isolated chloroplast,kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry Biophysics, 125: 189-198. Hegedus, A., Erdi, S. and Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under cadmium stress. Plant Science, 160:1085- 1093. Hou, L.Y., Shi, W.M., Wei, W.H. and Shen, H. (2011). Cadmium uptake, translocation, and tolerance in Arabidopsis thaliana. Biological Trace Element Research, 139:228–240Jiang, Y.M., Joyce, D.C. (2003). ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regulation, 39:171–174. Lee, J., Bae, H., Jeong, J., Lee, J.Y., Yang, Y.Y. and Hwang, I. (2003). Functional expression of a bacterial Heavy metal transporter in Arabidopsis enhances resistance and decrease uptake of heavy metals. Plant Physiology, 133:589-596. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382. Liu, D., Jiang, W. and Gao, X. (2004). Effect of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Plant Biology, 47: 79 -83. Lozak, A., Soltyk, K., Ostapczukc, P. and Fijaleka, Z. (2002). Determination of selected trace elements in herbs and their influence. Science of The Total Environment, 289:33-40. Marss, K.A. and Walbot, V. (1997). Expression and RNA splicing of the maize glutation s-transferase broneze Z gene is regulated by cadmium and other stresses. Plant Physiology, 113: 93-102. Memon. A.R., Aktoprakligul, D., Zdemur, A. and Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Botany journal, 25:111-121. Page, A. L., Bingham, F.T. and Nelson, C. (1971). Cadmium absorption and growth of various plant species as influenced by solution cadmium concentration. Journal of Environmental Quality, 1: 288-291. Popova, L., Maslenkova, L., Yordanova, R., Ivanova, A., Krantev, A., Szalai, G. and Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47: 224-231. Sakihama, Y., Cohen, M.F., Grace, S.C. and Yamasaki, H. (2002). Plant phenolics antioxidant and oxidant activity: Phenolics-induced oxidative damage mediated by metal in plants. Toxicology, 177: 67-80. Schützendübel, A. and Polle, A. (2002). Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization, Journal of Experimental Botany, 53: 1351- 1365. Shafi, M., Bakht, J., Hasan, M., Raziuddin, M., and Zhang, G. (2009). Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat ( Triticum aestivum. L). Bulletin of Environmental Contamination and Toxicology, 82:772-776. Shulaev, V. and Oliver, D.J. (2006). Metabolic and proteomic markers for oxidative stress. new tools for reactive oxygen species research. Plant Physiology, 141: 367-372 Siedlecka, A. M. (1995). Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Societatis Botanicosum poloniae, 64:265-272. Smeets, K., Cuypers, A., Lambrechts, A., Semane, B., Hoet, P., VanLaera , A. and Vangronsveld, J. (2005). Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiology and Biochemistry, 43:437-444. Stroihski, A. (1999). Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiologia Plantarum, 21: 175-188. Toppi, L. and Gabbrielli, R. (1999). Response to cadmium in higher plants- review. Environmental and Experimental Botany, 41:105-130. Vassilev, A., Vangronsveld, J. and Yordanov, I. (2002). Cadmium phytoextration; present state, biological backgrounds and reaserch needs –review. Plant Physiology, 28:68-95. Wagner, G.J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplast. Plant Physiology, 64: 88-93
| ||
آمار تعداد مشاهده مقاله: 483 تعداد دریافت فایل اصل مقاله: 359 |