تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,653 |
تعداد مشاهده مقاله | 12,495,785 |
تعداد دریافت فایل اصل مقاله | 8,886,807 |
Synthesis and characterization of nHA-PLA composite coating on stainless steel by dip-coating process for biomedical applications | ||
Journal of Interfaces, Thin Films, and Low dimensional systems | ||
مقاله 2، دوره 1، شماره 2، خرداد 2018، صفحه 57-64 اصل مقاله (614 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22051/jitf.2018.19010.1021 | ||
نویسندگان | ||
Monireh Ganjali* 1؛ Shaahin Mohammadzadeh Asl1؛ Mahdi Alizadeh2؛ Mona Shahlaei1؛ Amin Sohrabi Jam1 | ||
1Advanced Materials and Nanotechnology Department, Materials and Energy Research Center (MERC), Tehran, Iran | ||
2Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran | ||
چکیده | ||
316L stainless steel is the most commonly used metallic material in the manufacture of orthopedic implants. To achive better properties metal implants often coated with biocomposites. A sol–gel method was used for coating of Poly lactic acid (PLA)/Hydroxyapatite nanopowder (nHA) on stainless steel 316L substrate. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were utilized in order to evaluate the phase composition and the functional groups of PLA/nHA coatings. Morphology and thickness of the nanocomposites coating of samples were evaluated using scanning electron microscope (SEM). Cell viability asses and eventually corrosion resistance evaluated by MTT and potentiostat test, respectively. SEM result shows that the deposition rate is measured (in terms of coating thickness) as a function of immersion/soaking time. The results of XRD and FTIR tests confirmed the presence of phase of PLA/nHA nanocomposites in the coated samples. Moreover, the cellular behavior of coating was analyzed by the cell proliferation (MTT assay). Furthermore, the corrosion resistance of coated samples was increased with immersion or soaking time in the solution bath of PLA/nHA nanocomposites and was higer than the uncoated sample. | ||
کلیدواژهها | ||
Nano hydroxyapatite؛ poly lactic acid؛ stainless steel؛ dip coating | ||
عنوان مقاله [English] | ||
سنتز و مشخصه یابی پوشش نانوکامپوزیت HA-PLA روی فولاد زنگ نزن به روش دیپ کوت جهت مصارف پزشکی | ||
نویسندگان [English] | ||
منیره گنجعلی1؛ شاهین محمدزاده اصل1؛ مهدی علیزاده2؛ مونا شهلایی1؛ امین سهرابی جم1 | ||
چکیده [English] | ||
فولاد پزشکی 316L از شایعترین مواد فلزی است که در ساخت ایمپلتنهای ارتوپدی استفاده میشود. ایمپلنتهای فلزی معولا با بیوکامپوزیتها جهت نیل به خواص بهتر پوشش داده میشود. روش سل-ژل چهت پوشش پلی لاکتیک اسید (PLA)-نانوپودر هیدروکسی آپاتیت (nHA) بر روی زیرلایه فولاد پزشکی 316L استفاده شد. 10 گرم PLA به 100 گرم کلروفرم اضافه و برای مدت 2 ساعت در دمای 60 درجه سانتیگراد همزده شد. سپس 5/0 گرم nHA به این محلول اضافه و به مدت 30 دقیقه و با 60 درجه سانیگراد بهم خورد تا یک محلول ژل مانندی بدست آمد. آنگاه، زیرلایه به مدت 2، 5 و 15 دقیقه در این ماده غوطهورنگه داشته شد و با سرعت معین از این محلول بیرون آورده شد. آزمونهای پراش پرتو ایکس (XRD) و طیف نمایی فروسرخ تبدیل فوریه (FTIR) جهت ارزیابی فاز ترکیب و گروههای عاملی پوششهای PLA/nHA انجام پذیرفت. مورفولورژی و ضخامت پوششهای نانوکامپووزیتی نمونهها توسط میکروسکوپ روبشی الکترونی (SEM) مورد ارزیابی واقع شد. تکثیر سلولی و مقاومت به خوردگی توسط آزمونهای MTT و آزمون پتانسیواستات بررسی شد. نتایج SEM نشان داد که نرخ رسوب اندازه گیری شده (ضخامت پوشش) تابعی از زمان غوطهوری بود. نتایج آزمونهای XRD و FTIR حضور فاز نانوکامپوزیت PLA/nHA در نمونههای پوشش داده را تائید کرد.علاوه بر این، این، مقاومت به خوردگی نمونه های پوشش داده شده با زمان غوطه وری در محلول نانوکامپوزیتهای PLA / nHA افزایش یافته و بیشتر از نمونههای بدون پوشش بود. | ||
مراجع | ||
[1] Steve Weiner, and H. Daniel Wagner. “The material bone: structure-mechanical function relations.” Annual Review of Materials Science, 28 (1998) 271.
[2] Matsumura, Kazuaki, Takashi Hayami, Suong Hyu Hyon, and Sadami Tsutsumi. “Control of proliferationand differentiation of osteoblasts on apatite‐coatedpoly (vinyl alcohol) hydrogel as an artificial articularcartilage material.” Journal of Biomedical MaterialsResearch Part A, 92 (2010) 1225.
[3] Hong Li, Wu Yang, Ge Yunsheng, Jia Jiang, KaiGao, Pengyun Zhang, Lingxiang Wu, and Shiyi Chen.“Composite coating of 58S bioglass andhydroxyapatite on a poly (ethylene terepthalate)artificial ligament graft for the graft osseointegration ina bone tunnel.” Applied Surface Science, 257 (2011)9371.
[4] Tao Liu, Xinbo Ding, Dongzhi Lai, Yongwei Chen, Ridong Zhang, Jianyong Chen, Xinxing Feng etal. “Enhancing in vitro bioactivity and in vivoosteogenesis of organic–inorganic nanofibrousbiocomposites with novel bioceramics.” Journal of Materials Chemistry B, 2 (2014) 6293.
[5] R. Govindan, G. Suresh Kumar, and E. K. Girija.“Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications.” RSC Advances, 5 (2015) 60188.
[6] F. S. Senatov, K. V. Niaza, M. Yu Zadorozhnyy, A. V. Maksimkin, S. D. Kaloshkin, and Y. Z. Estrin.“Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.” J. of the mechanical behavior of biomedical materials, 57 (2016) 139.
[7] K. De Groot, R. Geesink, C. P. A. T. Klein, and P. Serekian. “Plasma sprayed coatings of hydroxylapatite.” J. Biomedical Materials Research Part A, 21 (1987) 1375.
[8] LinShu Liu, Young Jun Won, Peter H. Cooke, David R. Coffin, Marshal L. Fishman, Kevin B. Hicks, and Peter X. Ma. “Pectin/poly (lactide-co-glycolide) composite matrices for biomedical applications.” Biomaterials, 25 (2004) 3201.
[9] S. Mollazadeh, J. Javadpour, and A. Khavandi. “In situ synthesis and characterization of nano-size hydroxyapatite in poly (vinyl alcohol) matrix.” Ceramics International, 33 (2007) 1579.
[10] J. Milton Harris, Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Springer Science & Business Media, 2013.
[11] S. Saha and S. Pal. “Mechanical properties of bone cement: a review.” J. Biomedical Materials Research Part A, 18 (1984) 435.
[12] Yelena G. Shapovalova, Lyudmila A. Rasskazova, A. Gudima, Vyacheslav V. Ryabov, Anatoliy G. Filimoshkin, Irina A. Kurzina, Julia Kzhyshkowska, and Darya N. Lytkina. “Bioresorbable composites based on hydroxyapatite dispersed in polyL-lactide matrix.” European J. of cancer supplements, 13 (2015) 49.
[13] Ahmet Çakir, Funda Ak Azem, and Güler Ungan. “Use of polyvinyl alcohol to improve adhesion properties of hap coating on Ti–6Al–4V.”J. Biomechanics, 44 (2011) 21.
[14] M. P. Ferraz, F. J. Monteiro, and C. M. Manuel.“Hydroxyapatite nanoparticles: a review of preparation methodologies.” J. Applied Biomaterials and Biomechanics, 2 (2004) 74.
[15] Bora Mavis and A. Cüneyt Taş. “Dip coating of calcium hydroxyapatite on Ti‐6Al‐4V substrates.” J. of the American Ceramic Society, 83 (2000) 989.
[16] Tadashi Kokubo, Bioceramics and their clinical applications. Woodhead Publishing, 2008.
[17] Xiaofei Ma, Jiugao Yu, and Ning Wang. “Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends.” J. Polymer Science Part B: Polymer Physics, 44 (2006) 94.
[18] Chin San Wu, “Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid–characterization and biodegradability assessment.” Macromolecular Bioscience, 5 (2005) 352.
[19] Mahshid Kalani and Yunus Robiah, “Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.” International J. of nanomedicine, 7 (2012) 2165.
[20] Dean-Mo Liu, Quanzu Yang, and Tom Troczynski. “Sol–gel hydroxyapatite coatings on stainless steel substrates.” Biomaterials, 23 (2002) 691. | ||
آمار تعداد مشاهده مقاله: 1,045 تعداد دریافت فایل اصل مقاله: 717 |