1فارغ التحصیل کارشناسی ارشد میکروبیولوژی، گروه زیست شناسی ، دانشکده علوم، دانشگاه آزاد اسلامی دامغان
2دانشیار پژوهشکده زیست فناوری، سازمان پژوهشهای علمی و صنعتی ایران، تهران
3استادیار گروه زیست شناسی ، دانشکده علوم، دانشگاه آزاد اسلامی دامغان، ایران
چکیده
چکیده در طی فرآیند پیش تیمار اسیدی باگاس نیشکر محصولات ناخواسته ای مانند فورانها و ترکیبات فنولی تولید میشوند که اثر ممانعت کنندگی بر رشد میکروارگانیسم ها دارند. در این تحقیق تأثیر سمیت زدایی با استفاده از آهک اشباع به منظور بررسی اثر فاکتور های pH، دما و مدت زمان واکنش به روش آماری فاکتوریل کامل مورد بررسی قرار گرفت و مقدار اتانول تولید شده توسط مخمر ساکارومایسس سرویزیه در تمام شرایط سمیت زدایی مورد بررسی قرار گرفت. سمیت زدایی به روش آهک اشباع در pH های 10، 11 و 12 در دماهای 40 و 60 درجه سانتیگراد به مدت 30 و 60 دقیقه و پس از آن رساندن pH به 5 توسط اسیدسولفوریک انجام شد. سپس سویه موتان ساکارومایسس سرویزیه 5052 PTCC در محیط حاوی هیدرولیزات باگاس سمیت زدایی شده و نشده کشت داده شد. نتایج نشان میدهد افزایش pH، دما و مدت زمان سمیت زدایی سبب افزایش حذف فورفورال و در نتیجه افزایش توان تخمیری ساکارومایسس شده است، به طوری که سمیت زدایی در 12pH و دمای 60 درجه سانتیگراد به مدت 60 دقیقه، سبب 73% کاهش غلظت فورفورال و از طرفی 81% افزایش بازده تولید اتانول، در مدت زمان 18ساعت، شده است. اما از طرف دیگر کاهش غلظت قند طی سمیت زدایی به روش آهک اشباع در pH و دمای بالا، اصلیترین مشکل در طی این فرایند میباشد، به طوری که در 12pH و دمای 60 درجه سانتیگراد به مدت 60 دقیقه، به ترتیب 47% و 73% کاهش در غلظت قند کل و گلوکز مشاهده شد.
1Department of biology, Faculty of Science, Islamic Azad University, Damghan, Iran
2Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
3Department of biology, Faculty of Science, Islamic Azad University, Damghan, Iran
چکیده [English]
Abstract During the process of acid pretreatment of sugarcane bagasse, unwanted products such as furans and phenolic compounds are produced which show Inhibitory effect on the growth of microorganisms. In this study, the effect of over-liming detoxification was evaluated by full factorial statistical method where three factors of pH, temperature and reaction time were selected as independent variables. Ethanol production efficiency by Saccharomyces cerevisiae was compared in non-detoxified and detoxified treatments. The Overliming involved increasing the pH of hydrolyzes to 10, 11 and 12, keeping for 30 and 60 min at temperatures of 40 and 60 °c, followed by readjustment of the pH to 5.5. The mutant strain of Saccharomyces cerevisiae PTCC 5052 was cultured in the detoxified and non-detoxified media, containing bagasse hydrolysate. Based on the results increasing the pH, time and temperature resulted in more effective destruction of furfural and lead to better fermentability for hydrolyzes. furfural was decreased 73% after Overliming for 60 minutes, at 60 C, pH 12 and ethanol yield was increased 81% in comparison with non-detoxified hydrolyzed in 18h batch cultivation. But one disadvantage of this method is reducing simultaneous sugars and inhibitor during the reaction, so that, in pH 12 and 60 for 60 minutes, respectively, 47% and 73% of total sugars and glucose was decreased.
Cardona C, Quintero J, Paz I. (2011) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource technology; 101:4754-4766.
Quintero J, Montoya M, Sanchez O, Giraldo O, Cardona C. (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for Colombian case. Energy; 33:385-399.
Carlos A, Cardona C, Oscar J, Sanchez O. (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresource technology; 98:2415-2457.
Oscar J, Sanchez O, Carlos A, Cardona C. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource technology; 99:5270-5295.
Taherzadeh M, Karimi K. (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences; 9:1621-1651.
Palmqvist E, Hahn-hagerdal B. (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource technology; 74:25-33.
Modig T, Liden G, Taherzadeh M. (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochemical journal; 363:769-776.
Taherzadeh M, Gustafsson I. (2000) Physiological effects of 5-hydroxymethylfurfural on saccharomyces cerevisiae. Microbiology and biotechnology; 53:701-708.
Kent Hoekman S. (2009) Biofuels in the U.S. – Challenges and Opportunities. Renewable Energy; 34:14-22.
Taherzade M, Eklund R. (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial & engineering chemistry research; 36:4659-4665.
Larsoson S, Reimann. (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Biochemistry and biotechnology; 77:91-103.
Martinez A, Rodriguez M, Well M, York S, Oreston J, Ingram L. (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology progress; 17:287-293.
Millati R, Niklasson C, Taherzadeh M. (2002) Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by saccharomyces cerevisiae. Process Biochemistry; 38(4):525-522.
Purwadi R, Niklasson C, Taherzadeh M. (2004) Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. Biotechnology; 114:187-198.
Rabelo S, Filho R, Costa A. (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Applied biochemistry and biotechnology; 153:139-150.
Gerry P, Keough J. (2002) Experimental Design and Data Analysis for Biologists. Cambrige University press; ISBN 9780521009768
Singh A, Das K, Sharma D. (1984) Integrated process for production of xylose, furfural, and glucose from bagasse by two-step acid hydrolysis. Industrial & engineering chemistry product research and development; 23:257-262.
Sun Y, Cheng J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology; 83:1-11.
Taherzadeh M, Ekund R. (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial & engineering chemistry research; 36:4659-4665.
Demirbas A. (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy sources; 27:327-337.
Ashori A, Hamzeh Y, Amani F. (2011) Lemon Balm (Melissa officinalis) Stalk: Chemical Composition and Fiber Morphology. Journal of Polymers and the Environment; 19:297-300.
Taherzadeh M, Niklasson C, Liden G. (1999) Conversion of dilute-Acid hydrolyzates of spruce and birch to ethanol by fed-batch fermentation. Bioresource Technology; 69:59-66.
Ghose T. (1987) Measurement of cellulose activities. Applied chemistry division commission on Biotechnology; 59(2):257-268.
Waterhouse A. (2001) Folin-ciocalteau micro method for total phenol in wine. Current Protocols in Food Analytical Chemistry.
Martinez A, Rodriguea M, York S, Prestone J, Ingram L. (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnology progress; 16:637-641.
Manivannan A, Jayarani P, Narendhirakannan. (2012) Enhance acid hydrolysis for Bioethanol production from water hyacinth using fermentating yeast Candida intermedia NRRL Y-981. Scientific and industrial research; 71(1):51-56.
Ahi M, Azin M, Shojaosadat Ebrahimi A, Nosrati M. (2013) Optimization of sugarcane bagasse hydrolysis by Microwave-Assisted Pretreatment for Bioethanol Production. Chemical Engineering Technology; 36(11):1997-2005.
Leonard R, Hajny G. (1945) Fermentation of wood sugars to ethyl alcohol. Industrial & engineering chemistry research; 37:390-395.