
تعداد نشریات | 25 |
تعداد شمارهها | 967 |
تعداد مقالات | 8,013 |
تعداد مشاهده مقاله | 13,579,649 |
تعداد دریافت فایل اصل مقاله | 9,619,028 |
طراحی موجبر پلاسمونیک هیبرید گرافن متقارن با محصور شدگی و کارایی بالا | ||
فیزیک کاربردی ایران | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 خرداد 1404 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2025.48853.1435 | ||
نویسندگان | ||
محمدرضا جعفری* 1؛ اکبر اسدی2؛ سمیه کریمی3 | ||
1دانشیار، گروه فیزیک ماده چگال، دانشکده فیزیک، دانشگاه الزهرا، تهران، ایران | ||
2استادیار، گروه فیزیک، دانشکده علوم پایه، دانشگاه علوم دریایی امام خمینی، نوشهر، ایران | ||
3دانشجوی کارشناسی ارشد، گروه فیزیک ماده چگال، دانشکده فیزیک، دانشگاه الزهرا، تهران، ایران | ||
چکیده | ||
پلاسمونهای موجود در گرافن دارای ویژگیهای غیرعادی هستند و چشماندازهای امیدوارکنندهای را برای کاربردهای پلاسمونیکی ارائه میدهند. این پلاسمونها محدوده بسامدی گستردهای، از تراهرتز تا طیف مرئی، را پوشش میدهند. تاکنون مطالعات زیادی در رابطه با مُدهای پلاسمون در گرافن صورت گرفته است. در این پژوهش، یک موجبر پلاسمونیک گرافن متقارن برای بهبود عملکرد هدایت موج در محدوده فروسرخ میانی پیشنهاد و ویژگیهای پلاسمون گرافن با روش المان محدود با استفاده از نرم افزار کامسول بررسی شده است. ساختار این موجبر، به صورت دو نانو استوانه بیضوی پوشش داده شده با گرافن است که به صورت متقارن در هر طرف یک ورقه نازک قرار گرفتهاند. نتایج بدست آمده از شبیهسازی نشان میدهد که با تغییر کمیتهای هندسی ساختار پیشنهادی و تغییر نوع مواد، طول انتشار مدها بیش از 8 میکرومتر و ناحیه مُد بهنجار شده از مرتبه بدست میآید. به همین دلیل، موجبرِ پیشنهادی، کاربردهای امیدوارکنندهای در اجزای مدارات مجتمع فوتونیک و سایر سامانههای در مقیاس نانو دارد. | ||
کلیدواژهها | ||
موجبر پلاسمونیک؛ گرافن؛ کامسول؛ فروسرخ میانی | ||
عنوان مقاله [English] | ||
Design of a Symmetric Hybrid Graphene Plasmonic Waveguide with High Confinement and Efficiency | ||
نویسندگان [English] | ||
Mohammad Reza Jafari1؛ Akbar Asadi2؛ Somaye Karimi3 | ||
1Associate Professor, Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran | ||
2Assistant Professor, Department of Physics, Faculty of Science, Imam Khomeini University of Maritime Science, Nowshahr, Iran | ||
3M. Sc. Student, Department of Condensed Matter Physics Faculty of Physics Alzahra University Tehran Iran | ||
چکیده [English] | ||
Plasmons in graphene have unusual properties and offer promising prospects for plasmonic applications covering a wide frequency range from terahertz to the visible spectrum, and many studies have been conducted on plasmon modes in graphene. In this research, a symmetric graphene plasmonic waveguide has been proposed to improve the waveguide performance in the mid-infrared range, and the plasmonic properties of graphene have been investigated by the finite element method and using COMSOL software. The structure of this waveguide is in the form of two elliptical nano-cylinders coated with graphene, which are placed symmetrically on each side of a thin sheet of Al2O3. The results obtained from the simulation show that by changing the geometric parameters of the proposed structure and changing the type of materials, the propagation length of the modes is more than 8 micrometers, and the normalized mode area is obtained in the order of 10-6. For this reason, the proposed waveguide has promising applications in photonic integrated circuit components and other nanoscale devices. | ||
کلیدواژهها [English] | ||
Plasmonic Waveguide, Graphene, COMSOL Software, Mid-infrared | ||
مراجع | ||
[1] Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P. and Zhang, X., "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation", nature photonics 2(8), 496-500, 2008. https://doi.org/10.1038/NPHOTON.2008.131 [2] Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., and Smith, D. R., “Subwavelength integrated photonics”, Nature 560, 565–572, 2018. https://doi.org/10.1109/ICTON59386.2023.10207450 [3] Shahmansouri, M., and Mahmodi Moghadam, M., “Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab”, Physics of Plasmas 24, 102107, 2017. http://dx.doi.org/10.1063/1.4986333 [4] Mahmodi Moghadam, M., Shahmansouri, M., “Theoretical study of surface waves in a magnetized conductor-gap-dielectric nano-structure”, Physica Scripta 95(8), 085606, 2020. https://doi.org/ 10.1088/1402-4896/ab9ed5 [5] Yang, L., Li P., and Li, Z., “Plasmonic polarization beam splitting based on single silver nanowire”, Opt. Express 27, 3851–3860, 2019. https://doi.org/10.1364/OE.27.003851 [6] Huang, C. C., Chang, R. J., and Cheng, C. W., “Ultra-Low-Loss Mid-Infrared Plasmonic Waveguides Based on Multilayer Graphene Metamaterials”, Nanomaterials 11, 2981, 2021. https://doi.org/10.3390/nano11112981 [7] Ye, L., Sui, K., Liu, Y., Zhang, M., and Liu, Q., “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation”, Optics Express 26(12), 15935-15947, 2018. https://doi.org/10.1364/OE.26.015935 [8] Zhang, L., Pan, C., Zeng, D., Yang, Y., Yang, Y., and Junxian, M., “A hybrid-plasmonic-waveguide-based polarization-independent directional coupler”, IEEE Access 8, 134268–134275, 2020. https://doi.org/10.3390/nano11051281 [9] Xu, Y., Li, F., Kang, Z., Huang, D., Zhang, X., Tam, H.Y., and Wai, P. K. A., “Hybrid graphene-silicon based polarization-insensitive electro-absorption modulator with high-modulation efficiency and ultra-broad bandwidth”, Nanomaterials 9, 157, 2019. https://doi.org/10.3390/nano9020157 [10] Tuniz, A., Bickerton, O., Diaz, F. J., Kasebier, T., Kley, E. B., Kroker, S., Palomba, S., de Sterke, C. M., “Modular nonlinear hybrid plasmonic circuit”, Nat. Commun. 11, 2413, 2020. https://doi.org/10.1515/ntrev-2024-0137 [11] Jafari, M. R., Asadi, A., and Shahmansouri, M., “Ultra-deep Subwavelength Confinement Palladium-Based Elliptical Cylinder Plasmonic Waveguide in the Near-Infrared Range”, Plasmonics 18, 1037-1045, 2023. https://doi.org/10.1007/s11468-023-01830-z [12] Geim, A. K., “Graphene: status and prospects”, Science 324(5934), 1530–1534, 2009. https://doi.org/10.1126/science.1158877 [13] Grigorenko, A. N., Polini, M., and Novoselov, K. S., “Graphene plasmonics”, Nat. Photonics 6(11), 749–758, 2012. https://doi.org/10.1038/NPHOTON.2012.262 [14] Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., García de Abajo, F. J., Pruneri, V., and Altug, H., “Mid-infrared plasmonic biosensing with graphene”, Science 349(6244), 165–168, 2015. https://doi.org/10.48550/arXiv.1506.06800 [15] Xu, W., Zhu, Z.H., Liu, K., Zhang, J.F., Yuan, X.D., Lu, Q.S., Qin, S.Q., “Dielectric loaded graphene plasmon waveguide”, Opt. Express 23, 5147–5153, 2015. https://doi.org/10.1364/OE.23.005147 [16] Yang, Y., Lin, H., Zhang, B.Y., Zhang, Y., Zheng, X., Yu, A., Hong, M., Jia, B., “Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices”, Acs Photonics 6(4), 1033-1040, 2019. https://doi.org/10.1021/acsphotonics.9b00060 [17] Asadi, A., Jafari, M. R., and Shahmansouri, M., “Simulation optimized design of graphene-based hybrid plasmonic waveguide”, Indian J Phys., 97, 2515-2522, 2022. https://doi.org/10.1007/s12648-023-02601-6 [18] Asadi, A., Jafari, M. R., and Shahmansouri, M., “Characteristics of a Symmetric Mid- infrared Graphene Dielectric Hybrid Plasmonic Waveguide with Ultra-deep Subwavelength Confinement”, Plasmonics 17, 1819-1829, 2022. https://doi.org/10.22051/jitl.2023.42299.1077 [19] Yan, H., Low, T., Zhu, W., Wu, Y., Freitag, M., Li, X., Guinea, F., Avouris, P., Xia, F., “Damping pathways of mid-infrared plasmons in graphene nanostructures”, Nature Photonics 7, 394-399, 2013. http://dx.doi.org/10.1038/nphoton.2013.57 [20] Strait, J. H., Nene, P., Chan, W.M., Manolatou, C., Tiwari, S., Rana, F., Kevek, J.W., McEuen, P.L., “Confined plasmons in graphene microstructures: Experiments and theory”, Physical Review B 87, 241410, 2013. https://doi.org/10.1103/PhysRevB.87.241410 [21] Gao, Y., Ren, G., Zhu, B., Liu, H., Lian, Jian, Y., S., “Analytical model for plasmon modes in graphene-coated nanowire”, Optics Express 22, 24322-24331, 2014. https://doi.org/10.1364/OE.22.024322 [22] Jabbarzadeh, F., and Habibzadeh-Sharif, A., “High performance dielectric loaded graphene plasmonic waveguide for refractive index sensing”, Opt. Commun. 479, 126419, 2021. https://doi.org/10.1016/j.optcom.2020.126419 [23] Zhu, J., Jiang, F., and Yunbai, Q., “Sense of surface plasmon polarization waveguide of graphene”, Plasmonics 14, 1903–1910, 2019. https://link.springer.com/article/10.1007/s11468-019-00984-z [24] Jafari, M. R., Asadi, A., and Shahmansouri, M., “Design of Graphene Hybrid Dielectric Plasmonic Nano‑waveguide with Ultralow Propagation Loss”, Journal of Electronic Materials 52, 6483–6491, 2023. https://doi.org/10.1007/s11664-023-10640-2 [25] Wang, J., Xing, Z., Chen, X., Cheng, Z. Z., Li, X. J., Liu, T., “Recent progress in waveguide-integrated graphene photonic devices for sensing and communication applications”, Front. Phys. 8, 37, 2020. https://doi.org/10.3390/nano11051281 [26] Liao, B., Guo, X., Hu, H., Liu, N., Chen, K., Yang, X., Dai, Q., “Ultra-compact graphene plasmonic filter integrated in a waveguide”, Chin. Phys. B 27, 094101, 2018. https://doi.org/10.3390/nano11051281 [27] Teng, D., Cao, Q., Wang, K., “An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency”, Journal of Optics 19, 055003, 2017. https://doi.org/10.3390/nano11010210 [28] Asadi, A., Jafari, M. R., and Shahmansouri, M., "Design of symmetric hybrid nanowaveguide based on graphene with strong confinement and high efficiency in the mid-infrared spectrum region”, Marine Electrical Engineering 1, Winter 1400. https://doi.org/10.22034/meej.2022.533797.1019 [29] Jafari, M. R., and Asadi, A., “Modeling a high-performance broadband mid-infrared modulator using graphene-based hybrid plasmonic waveguide”, Journal of interfaces thin films and low dimensional systems 5, 505-515, 2022. https://doi.org/10.22051/jitl.2023.42299.1077 [30] Teng, D., Wang, Y., Xu, T., Wang, H., Shao, Q., and Tang, Y., “Symmetric Graphene Dielectric Nano waveguides as Ultra-Compact Photonic Structures”, Nanomaterials 11(5), 1281, 2021. https://doi.org/10.3390/nano11051281 [31] He, X., Ning, T., Lu, S., Zheng, J., Li, J., Li, R., Pei, L., “Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement”, Optic Express 26(8), 2018. https://doi.org/10.1364/OE.26.010109 | ||
آمار تعداد مشاهده مقاله: 2 |