
تعداد نشریات | 25 |
تعداد شمارهها | 941 |
تعداد مقالات | 7,773 |
تعداد مشاهده مقاله | 12,854,196 |
تعداد دریافت فایل اصل مقاله | 9,152,558 |
مطالعه تأثیر آلایندههای شیمیایی بر لاروهای وزغ سبز (Pallas, 1771) Bufotes sitibundus | ||
زیست شناسی کاربردی | ||
دوره 38، شماره 1 - شماره پیاپی 83، اسفند 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.47462.1634 | ||
نویسندگان | ||
علیرضا پسرکلو* 1؛ مینا کریمی2؛ راضیه علائی3 | ||
1دانشیار ،گروه زیست شناسی، دانشکده علوم، دانشگاه اراک، اراک، ایران | ||
2دانشجوی کارشناسی ارشد .گروه زیست شناسی، دانشکده علوم، دانشگاه اراک، اراک، ایران | ||
3دانشجوی دکترا.گروه زیست شناسی، دانشکده علوم، دانشگاه اراک، اراک، ایران | ||
چکیده | ||
مقدمه:آلودگیهای شیمیایی آب به عنوان یکی از تهدیدات اصلی جوامع زیستی معرفی شده است. دوزیستان به واسطه چرخه زندگی دوفازی، پوست نفوذ پذیر و لارو آبزی، ارتباط تنگاتنگی با محیطهای آبی دارند. در مطالعه حاضر، تأثیر آلایندههای محیطی موجود در برخی از زیستگاههای دوزیستان در اطراف شهرستانهای اراک و شازند، بر تفریخ تخم و بقای لاروهای وزغ سبز Bufotes sitibundus مورد بررسی قرار گرفت. مواد و روشها: اثر شش منبع آب آلوده (واقع در سه منطقه) و یک منبع کنترل بر نمونههای تخم مورد بررسی قرار گرفت. پارامترهای فیزیکوشیمیایی از جمله PH، TDS، Salt، EC، DO، BOD، COD و تجزیه عنصری با استفاده از دستگاه ICP در نمونههای آب و تعداد شش صفت زیستی از قبیل شاخص رشد، وضعیت فیزیکی، طول دوره انکوباسیون مراحل جنینی-لاروی، ناهنجاری، درصد بقاء و مرگ و میر در نمونههای لارو مورد بررسی قرار گرفت. نتایج و بحث: کاهش معنادار بقا در همهی ظروف حاوی آبهای آلوده نسبت به نمونهی کنترل، کاهش رشد در بعضی از ظروف و افزایش رشد در یکی از ظروف پرورش در مقایسه با آب نمونهی کنترل، و بروز ناهنجاریها در دوران لاروی در ظروف تیماردیده شد.با توجه به پژوهشهای قبلی و نتایج معنادارِ حاصل از پژوهش حاضر میتوان کاهش درصد بقا، افزایش بروز ناهنجاریها، و تفاوت درصد رشد در ظروف پرورش را به آلودگی شیمیایی آب (COD)، وجود فلزات سنگین و شوری آب نسبت داد. | ||
کلیدواژهها | ||
Bufotes sitibundus؛ آلودگیهای شیمیایی آب؛ انقراض دوزیستان؛ شاخص رشد؛ لارو وزغ سبز؛ ناهنجاری | ||
عنوان مقاله [English] | ||
Studying the effect of chemical pollutants on the larvae of the green toad Bufotes sitibundus (Pallas, 1771) | ||
نویسندگان [English] | ||
Alireza Pesarakloo1؛ Mina Karimi2؛ Raziyeh Alaei3 | ||
1Associate Professor.Department of Biology, Faculty of Science, Arak University, Arak, Iran | ||
2MSC.Department of Biology, Faculty of Science, Arak University, Arak, Iran | ||
3MSC.Department of Biology, Faculty of Science, Arak University, Arak, Iran | ||
چکیده [English] | ||
Introduction: chemical pollution of water has been introduced as one of the main threats to biological communities. Amphibians have a close relationship with aquatic environments due to their biphasic life cycle, permeable skin and aquatic larvae. the effect of environmental pollutants in some amphibian habitats around Arak and Shazand cities was investigated on egg hatching and survival of green toad larvae Bufotes sitibundus. Materials and methods: the effect of six contaminated water sources and one control source on egg samples was investigated. Physicochemical parameters including PH, TDS, Salt, EC, DO, BOD, COD and elemental analysis using ICP device in water samples and the number of six biological traits such as growth index, physical condition, incubation period of embryo-larval stages, malformation , survival and mortality percentages were investigated in larval samples. Results and discussion: A significant decrease in survival in all containers containing contaminated water compared to the control sample, a decrease in growth in some containers and an increase in growth in one of the breeding containers compared to the water in the control sample, and the occurrence of abnormalities were treated in containers during the larval period. According to the previous researches and the significant results of the current research, the decrease in the survival percentage, the increase in the occurrence of abnormalities, and the difference in the growth percentage in the breeding containers can be attributed to the chemical pollution of the water. COD), attributed the presence of heavy metals and water salinity. | ||
کلیدواژهها [English] | ||
Bufotes sitibundus, water chemical pollution, amphibian extinction, growth index, green toad larvae, abnormality | ||
مراجع | ||
Ankley, G.T., Tietge, J.E., DeFoe, D.L., Jensen, K.M., Holcombe, G.W., Durhan, E.J., & Diamond, S. A. (2009). Effects of ultraviolet light and methoprene on survival and development of Rana pipiens. Environmental Toxicology and Chemistry, 17: 2530-2542. https://doi.org/10.1002/etc.5620171222 Arciszewski, M., Chętnicki, W., Jekatierynczuk-Rudczyk, E., & Wereszczuk, A. (2014). Effect of physico-chemical parameters of water reservoirs on amphibian density. North-Western Journal Of Zoology, 10(1):167-72. http://biozoojournals.ro/nwjz/index.html Beattie, R.C., Tyler–Tones, R., & Baxter, M.J. (1992). The effects of pH, aluminium concentration and temperature on the embryonic development of the European common frog, Rana temporaria. Journal of Zoology, 228: 557-570. Beck, C.W., & Congdon, J.D. (2000). Effects of age and size at metamorphosis on performance and metabolic rates of Southern Toad, Bufo terrestris, metamorphs. Functional ecology, 14(1):32-8. https://doi.org/10.1046/j.1365-2435.2000.00386.x Blaustein, A. R., Wake, D. B., & Sousa, W. P. (1994). Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation biology, 8(1), 60-71. https://doi.org/10.1046/j.1523-1739.1994.08010060.x Brady, SP. (2013). Microgeographic maladaptive performance and deme depression in response to roads and runoff. PeerJ 1: e163. https://doi.org/10.7717/peerj.163 Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS, 114(30), E6089–E6096. https://doi.org/10.1073/pnas.1704949114. Chambers, DL. (2011). Increased conductivity affects corticosterone levels and prey consumption in larval amphibians. Journal of Herpetology, 45(2), 219-223. https://doi.org/10.1670/09-211.1 Crain, C. M., Kroeker, K., & Halpern, BS. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11(12), 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x Daam, M.A., Ilha, P., & Schiesari, L. (2020). Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species. Ecotoxicology, 29(9). https://doi.org/10.1007/s10646-020-02247-8 Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195): 401–406. https://doi.org/10.1126/science.1251817. Egea‐Serrano, A., Relyea, RA., Tejedo, M., & Torralva, M. (2012). Understanding of the impact of chemicals on amphibians: a met analytic review. Ecology and evolution, 2(7):1382-97. https://doi.org/10.1002/ece3.249 Figueroa, L. R., Acosta, N. R., & Nuñez, A. (2009). Effects of progressive desiccation on the larval development of Pleurodema borellii. Methods in Ecology and Systematics, 4(2): 1–7. Frymus, L.E., Goedert, D., Zamora-Camacho, F.J., Smith, P.C., Zeiss, C.J., Comas, M., & Brady, S.P. (2021). Salted roads lead to edema and reduced locomotor function in wood frogs. bioRxiv, 2021-03. https://doi.org/10.1101/2021.03.23.436008 Gibbons, J.W., Winne, C.T., Scott, D.E., Willson, J.D., Glaudas, X., Andrews, K.M., Todd, B.D., Fedewa, L.A., Wilkinson, L., Tsaliagos, R.N. & Harper, S.J. (2006). Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conservation Biology, 20(5):1457-1465. https://doi.org/10.1111/j.1523-1739.2006.00443.x Goldspiel, H.B., Cohen, J.B., Mcgee, G.G., & Gibbs, J.P. (2019). Forest land-use history affects outcomes of habitat augmentation for amphibian conservation. Global Ecology and Conservation, 19:e00686. https://doi.org/10.1016/j.gecco.2019.e00686 Gunderson, A.R., Armstrong, E.J., & Stillman, J.H. (2016). Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Annual Review of Marine Science, 8: 357–378. https://doi.org/10.1146/annurev-marine-122414-033953 Gunderson, A.R., Tsukimura, B., & Stillman, J.H. (2017). Indirect effects of global change: From physiological and behavioral mechanisms to ecological consequences. Integrative and Comparative Biology, 57(1), 48–54. https://doi.org/10.1093/icb/icx056 Hansen, N.A., Scheele, B.C., Driscoll, D.A., & Lindenmayer, D.B. (2018). Amphibians in agricultural landscapes: The habitat value of crop areas, linear plantings and remnant woodland patches. Animal Conservation, 1-11. https://doi.org/10.1111/acv.12437 Harmon, J.P., Moran, N.A., & Ives, A.R. (2009). Species response to environmental change: Impacts of food web interactions and evolution. Science (New York, N.Y.), 323(5919), 1347–1350. https://doi.org/10.1126/science.1167396 Hopkins, G.R., & Brodie, E.D. (2015). Occurrence of amphibians in saline habitats: a review and evolutionary perspective. Herpetological Monographs, 29(1):1-27. https://doi.org/10.1655/HERPMONOGRAPHS-D-14-00006 Hopkins, G.R., Brodie, E., & French, S.S. (2014). Developmental and evolutionary history affect survival in stressful environments. PLoS One 9: e95174. https://doi.org/10.1371/journal.pone.0095174 Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Meyer, A.H., & Kuzmin, S.L. (2000). Quantitative evidence for global amphibian population declines. Nature, 404(6779), 752-755. https://doi.org/10.1038/35008052 Huang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., Deng, J., Luo, Y., Wen, X., & Zhang, Y. (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405, 124187. https://doi.org/10.1016/j.jhazmat.2020.124187 IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. IUCN. (2022). The IUCN red list of threatened species. Version 2022-1. ISSN 2307-8235. 2022. https://www.iucnredlist.org Karraker, NE., & Ruthig, GR. (2009). Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds. Environmental Research 109: 40–45. https://doi.org/10.1016/j.envres.2008.09.001 Lajmanovich, R.C., Peltzer, P.M., Attademo, A.M., Martinuzzi, C.S., Simoniello, M.F., Colussi, C.L., Boccioni, A.P. C., & Sigrist, M. (2019). First evaluation of novel potential synergistic effects of glyphosate and arsenic mixture on Rhinella arenarum (Anura: Bufonidae) tadpoles. Heliyon, 5(10), e02601. https://doi.org/10.1016/j.heliyon.2019.e02601 Lambert, M.R.K. (2001): Residue loads in amphibians used as biomarkers of pesticide levels entering food chains in sub– Saharan Africa. African Journal of Herpetology 50: 105-114. https://doi.org/10.1080/21564574.2001.9635455 Mattheis, M. (2019). Road salt effects on larval performance traits and tail anatomy in the wood frog (Rana sylvatica). Southern Connecticut State University McDiarmid, R.W., & Altig, R. (1999). Tadpoles. The Biology of Anuran Larvae. 1st ed. The University of Chicago Press; Ocampo, M., Chuirazzi, C., & Takahashi, M.K. (2022). The effects of road salt (NaCl), predation, and competition on the growth and community interactions of spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus). Environmental Pollution, 315, 120349. https://doi.org/10.1016/j.envpol.2022.120349 Ortiz–Santaliestra, M.E., Marco, A., & Lizana, M. (2005): Sensitivity and behavior of the Iberian newt, Triturus boscai, under terrestrial exposure to ammonium nitrate. Bull. Environmental Contamination and Toxicology 75: 662-669. https://doi.org/10.1007/s00128-005-0803-z Park, C.J., Ahn, H.M., Cho, S.C., Kim, T.H., Oh, J.M., Ahn, H.K., Chun, S.H., & Gye, M.C. (2014). Developmental toxicity of treated municipal wastewater effluent on Bombina orientalis (Amphibia: Anura) embryos. Environmental toxicology and chemistry. Apr;33(4):954-61. https://doi.org/10.1002/etc.2519 Peluso, J., Chehda, A.M., Olivelli, M.S., Ivanic, F.M., Coll, C.S.P., Gonzalez, F., Valenzuela, L., Rojas, D., Cristos, D., Butler, M., Candal., R.J., & Aronzon, C.M. (2023). Metals, pesticides, and emerging contaminants on water bodies from agricultural areas and the effects on a native amphibian. Environmental Research, 226, 115692. https://doi.org/10.1016/j.envres.2023.115692 Peluso, J., Coll, C.S.P., & Aronzon, C.M. (2021). In situ exposure of amphibian larvae (Rhinella fernandezae) to assess water quality by means of oxidative stress biomarkers in water bodies with different anthropic influences. Chemosphere, 271, 129598. https://doi.org/10.1016/j.chemosphere.2021.129598 Reid, L.M., & Dunne, T. (1984). Sediment production from forest road surfaces. Water Resources Research, 20(11), 1753–1761. https://doi.org/10.1029/WR020i011p01753 Ruiz, G.M., Fofonoff, P.W., Carlton, J.T., Wonham, M.J., & Hines, A.H. (2000). Invasion of coastal marine communities in North America: Apparent patterns, processes, and biases. Annual Review of Ecology and Systematics, 31(1), 481–531. https://doi.org/10.1146/annurev.ecolsys.31.1. Scheuhammer, A., Braune, B., Chan, H.M., Frouin, H., Krey, A., Letcher, R., Loseto, L., Noel, M., Ostertag, S., Ross, P., & Waylamd, M. (2015). Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. in Science of the Total Environment, No. 509–510, pp.91–103. https://doi.org/10.1016/j.scitotenv.2014.05.142 Schlarb, AM. (2021). The Effects of Salinity on Canadian Toad (Anaxyrus hemiophrys) Larvae and Post-Metamorphic Juveniles (Doctoral dissertation, North Dakota State University). Stillman, J.H. (2019). Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology, 34(2), 86–100. https://doi.org/10.1152/physiol.00040.2018 Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L., & Waller, R.W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783-1786. https://doi.org/10.1126/science.1103538 Todgham, A.E., & Stillman, J.H. (2013). Physiological responses to shifts in multiple environmental stressors: Relevance in a changing world. Integrative and Comparative Biology, 53(4), 539–544. https://doi.org/10.1093/icb/ict086 Todgham, A.E., Schulte, P.M., & Iwama, G.K. (2005). Cross-tolerance in the tidepool sculpin: The role of heat shock proteins. Physiological and Biochemical Zoology, 78(2), 133–144. https://doi.org/10.1086/425205 Wake, D.B. (1991). Declining amphibian populations. Science, 253(5022), 860-860. https://doi.org/10.1126/science.253.5022.860 Wells, K.D. (2007). The Ecology and Behavior of amphibians. Chicago: The University of Chicago Press. | ||
آمار تعداد مشاهده مقاله: 132 |