تعداد نشریات | 25 |
تعداد شمارهها | 937 |
تعداد مقالات | 7,696 |
تعداد مشاهده مقاله | 12,621,304 |
تعداد دریافت فایل اصل مقاله | 8,985,610 |
اثر نانوذرات سیلیکون بر برخی پارامترهای فیزیولوژیکی بنه های زعفران (Crocus sativus) | ||
زیست شناسی کاربردی | ||
مقاله 5، دوره 33، شماره 2 - شماره پیاپی 64، شهریور 1399، صفحه 62-77 اصل مقاله (803.9 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2020.30372.1350 | ||
نویسندگان | ||
بهاره زارعی1؛ خدیجه کیارستمی* 2؛ منیر حسین زاده نمین2؛ منا صراحی نوبر* 3 | ||
1دانشجوی کارشناسی ارشد فیزیولوژی گیاهی، گروه علوم گیاهی، دانشکده علوم زیستی، دانشگاه الزهرا، تهران، ایران | ||
2دانشیار گروه علوم گیاهی، دانشکده علوم زیستی، دانشگاه الزهرا، تهران، ایران | ||
3استادیار گروه علوم گیاهی، دانشکده علوم زیستی، دانشگاه الزهرا، تهران، ایران | ||
چکیده | ||
نانوذرات سیلیکون دارای ویژگی های فیزیکوشیمیایی متمایزی هستند که از طریق ورود به گیاهان بر متابولیسم گیاه تاثیرگذاشته و موجب بهبود رشد و عملکرد گیاه در شرایط محیطی نامطلوب میشوند. این تحقیق به منظور بررسی اثرات فیزیولوژیک نانوسیلیکون بر روی بنه زعفران انجام شد. گیاهان با نانو ذره سیلیکون در دو غلظت 9 و 18 میلی گرم بر لیتر تیمار و مورد ارزیابی قرار گرفتند. آزمایش به صورت طرح کاملا تصادفی با سه بار تکرار انجام شد. نتایج نشان داد که تیمار با نانوسیلیکون محتوای عناصری از جمله سیلیکون، پتاسیم، آهن، روی، منیزیم و کلسیم را افزایش داد. اما تفاوت معنی داری بر وزن تر و خشک و همچنین محتوای پروتئین مشاهده نشد ولی تعداد بنه های دختری در گیاهان تحت تیمار نسبت به شاهد افزایش یافت. همچنین محتوای پرولین و مالون دی آلدئید به طور معنی داری در بنههای زعفران تحت تیمار افزایش یافت. بیشترین میزان فنل و فلاونوئید، به ترتیب در گیاهان تیمار شده با غلظت های 9 و 18 میلی گرم بر لیتر نانوسیلیکون مشاهده شد. بر اساس نتایج به دست آمده می توان نتیجه گرفت تیمار با نانو ذرات سیلیکون می تواند محتوای تغذیه ای بنه زعفران و ظرفیت سیستم پاداکسایشی را از طریق تولید متابولیت های ثانوی افزایش دهد. | ||
کلیدواژهها | ||
ترکیبات فنلی؛ سیستم پاداکسایشی؛ Crocus sativus | ||
عنوان مقاله [English] | ||
Effect of silicon nanoparticles on some physiological parameters of saffron corm (Crocus sativus) | ||
نویسندگان [English] | ||
Bahareh Zarei1؛ Khadijeh Kiarostami2؛ Monir Hosseinzade Namin2؛ Mona Sorahinobar3 | ||
1MSC.Plant Physiology, Department of Plant Sciences, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran | ||
2Associate Professor, Department of Plant Sciences, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran | ||
3Assistant Professor, Department of Plant Sciences, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran | ||
چکیده [English] | ||
Silicon nanoparticles have distinctive physicochemical characteristics. They are able to enter into plants and impact the metabolisms of plants as well as improve plant growth and yield under unfavorable environmental conditions. This research was done in order to study the physiological effects of nanosilicon on Crocus sativus corm. The corms were treated with silicon nanoparticles in concentrations of 0, 9 and 18 mg L−1. The experiment was done as completely randomized design in three replicates. The results showed that nano-silicon treatment increased content of silicon, potassium, iron, zinc, magnesium and calcium contents in plants but did not affect the fresh and dry weight as well as protein content, significantly. Moreover, the number of daughter corms, malondialdehyde and proline content significantly increased in nano-silicon treated plants as compared to non-treated control. The maximum content of total phenolics and flavonoid content were observed in plants treated with 9 and 18 mgL-1 respectively. Based on the results, it can be concluded that the examined concentrations of silicon nanoparticles can increase saffron corm nutrient content, its capacity of antioxidant system by the production of secondary metabolites. | ||
کلیدواژهها [English] | ||
Antioxidant system, Crocus sativus, Nanosilicon | ||
مراجع | ||
اسدی، ا.، حقنیا، غ.، لکزیان، ا.، مفتون، م. (۱۳۹۳) .تأثیر مقادیر مختلف سیلیسیم و نیتروژن بر خصوصـیات مورفولـوژی، عملکـرد و اجزای عملکرد دو رقم گندم. نشریه زراعت (پژوهش و سازندگی) ۱۰۳ :۱۶۷-۱۷۸. بهتاش، ف.، طباطبایی، ج.، ملکوتی، م.، سرورالدین، م.، اوسـتان، ش. (۱۳۸۹) .اثـر کـادمیم و سیلیسـیم بـر رشـد و برخـی ویژگیهای فیزیولوژیکی چغندر لبویی. مجله دانش کشاورزی پایدار (۲۰) ۱ : ۵۳-5۶. پیوست، غ.، زارع بوانی، م.، سمیعزاده لاهیجی، ح. (۱۳۸۷) .تأثیر سیلیسیم بر روی عناصـر غـذایی و نیتـرات در کـاهو. مجلـه علوم باغبانی ایران (1)39:- 1-8. دهقانی پوده، ص. (۱۳۹۱ ) .اثر سیلیکات پتاسیم و نانوسیلیکون روی رشد و نمـو تـوت فرنگـی تحـت شـرایط تـنش آبـی. پایـان نامـه کارشناسی ارشد، دانشگاه صنعتی اصفهان، ۸۴ صفحه. رستمی، م.، محمدی، ه. ( 1391 ). بررسی اثر کاشت تراکم بنه بر رشد و عملکرد زعفران در شرایط اقلیمی ملایر. نشریه بوم شناسی کشاورزی. (5) 1: 28-38. حبیبی، ق .، عابدینی، م. (1394). اثر کاربرد سیلیکون بر مقدار فنل، سیستم آنتی اکسیدانی و فعالیت آنزیم فنیل آلانین آمونیالیاز در میوه های آلوی شابلون انبار شده. مجله تازه های بیوتکنولوژی سلولی . (5)19: 93-100. عاصمه، م.، پور اکبر، ل. ( 1395). اثر نانوذرات سیلیکات بر برخی فاکتورهای رشدی درگیاه زعفران تحت تنش شوری. نوزدهمین کنگره ملی و هفتمین کنگره بین المللی زیست شناسی ایران، تبریز، دانشگاه تبریز و انجمن زیست شناسی ایران. فاطمی، س.، طباطبایی، م. فلاحی، ا. (۱۳۸۸) .اثر سیلیسیم بر رشد و عملکرد گیاه توت فرنگی در شـرایط تـنش شـوری. مجله علوم باغبانی (علوم و صنایع کشاورزی) (۲۳)۱ : ۸۸-۹۵. نظر علیان، ص.، مجد، ا.، آیریان، س.، قهرمانی نژاد، ف.، نجفی، ف.، گرگر، م. ( 1395). تاثیر سیلیس و نانو ذرات سیلیس بر جوانه زنی بذرها و رشد گیاه شنبلیله. فصلنامه زیست شناسی تکوینی. (3)1: 62-53. یوسفی، ر.، اثنی عشری، م. (1396). تأثیر میکرو و نانوذرات سیلیسیم بر غظت عناصر پرمصرف، کم مصرف و میزان سیلیسیم گیاه توت فرنگی در شرایط کشت بدون خاک. مجله علوم و فنون کشت های گلخانه ای. (1) 8: 57-71. Ali, M., Zoltai, S. and Radford, F. (1988). A comparison of dry and wet ashing methods for the elemental analysis of peat. Canadian journal of soil science, 68(2), 443-447. Amirshekari, H., Sorooshzadeh, A., Modaress, A. and Jalali, M. (2007). Effects of root-zone temperature, corm size and gibberellin on vegetative growth of Saffron (Crocus sativus L.). Journal of Agricultur Science and Natural Resource, 14, 96-103. Bates, L. S., Waldren, R. P. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Chang, H.-B., Lin, C.-W. and Huang, H.-J. (2005). Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regulation, 46(3), 261-266. Chen, T. H. and Murata, N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5(3), 250-257. Crusciol, C. A., Pulz, A. L., Lemos, L. B., Soratto, R. P. and Lima, G. P. (2009). Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science, 49(3), 949-954. Cui, J., Liu, T., Li, F., Yi, J., Liu, C. and Yu, H. (2017). Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environmental Pollution, 228, 363-369. Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2), 155-160. Grand, A. A., Vennat, B., Pourrat, A. and Legret, P. (1994). Standardization of propolis extract and identification of principal constituents. Journal de pharmacie de Belgique, 49(6), 462-468. Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R. and Dalla Costa, L. (2012). Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry, 56, 14-23. Haghighi, M., Afifipour, Z. and Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. Journal of Biological and Environmental Sciences, 6(16), 87-90. Hashemi, S. (2019). Effect of Nanoparticles on Lipid Peroxidation in Plants Lipid Metabolism: IntechOpen. Heath, R. L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. Hussain, B., Lin, Q., Hamid, Y., Sanaullah, M., Di, L., Khan, M. B. and Yang, X. (2020). Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Science of the Total Environment, 712, 136497. Islam, A. and Saha, R.C. (1969), Effects of silicon on the chemical composition of rice plants. Plant Soil, 30:446–458. Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, M., Shahzad, S. M., Yousaf, B. and Mehmood, S. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. Journal of Environmental Management, 183, 521-529. Kaveh, R., Li, Y.-S., Ranjbar, S., Tehrani, R., Brueck, C. L. and Van Aken, B. (2013). Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, 47(18), 10637-10644. Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T. and Rupasinghe, H. V. (2008). Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396-401. Kováčik, J., Grúz, J., Bačkor, M., Strnad, M. and Repčák, M. (2009). Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28(1), 135. Kumar, V., Sharma, M., Khare, T. and Wani, S. H. (2018). Impact of nanoparticles on oxidative stress and responsive antioxidative defense in plants. Nanomaterials in Plants, Algae, and Microorganisms, 393-406. Lee, W. M., An, Y. J., Yoon, H. and Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1915-1921. Leidi, E., Silberbush, M. and Lips, S. (1991). Wheat growth as affected by nitrogen type, pH and salinity. II. Photosynthesis and transpiration. Journal of Plant Nutrition, 14(3), 247-256. Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209(2), 217. Liang, Y., Shen, Q., Shen, Z. and Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition, 19(1), 173-183. Liu, H.-x., Guo, Z.-g., Guo, X.-h., Zhou, X., Hui, W. and Wang, K. (2009). Effect of addition of silicon on water use efficiency and yield components of alfalfa under the different soil moisture. Acta Ecologica Sinica, 29(6), 3075-3080. Majumder, D. D., Banerjee, R., Ulrichs, C., Mewis, I. and Goswami, A. (2007). Nano-materials: Science of bottom-up and top-down. IETE Technical Review, 24(1), 9-25. Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H. R. and Aghdasi, M. (2015). Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere, 25(2), 192-201. Miao, B.-H., Han, X.-G., and Zhang, W.-H. (2010). The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany, 105(6), 967-973. Mitani, N., Chiba, Y., Yamaji, N. and Ma, J. F. (2009). Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. The Plant Cell, 21(7), 2133-2142. Miyake, Y. and Takahashi, E. (1983). Effect of silicon on the growth of solution-cultured cucumber plant. Soil Science and Plant Nutrition, 29(1), 71-83. Molina, R. V., García-Luis, A., Coll, V., Ferrer, C., Valero, M., Navarro, Y. and Guardiola, J. L. (2004). Flower Formation in the Saffron Crocus (Crocus sativus L). The Role of Temperature. Acta Horticulture, 39-48. Pavlovic, J., Samardzic, J., Maksimović, V., Timotijevic, G., Stevic, N., Laursen, K. H. and Liang, Y. (2013). Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198(4), 1096-1107. Qados, A. M. A. (2015). Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Journal of Experimental Agriculture International, 78-95. Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable products: Tata McGraw-Hill Education. Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M. and Brestic, M. (2019). Application of silicon nanoparticles in agriculture. Biotech, 9(3), 90. Saeidian, S., Keyhani, E. and Keyhani, J. (2006). Polyphenol Oxidase Activity during Development of Saffron (Crocus sativus L.) Corm. Paper presented at the II International Symposium on Saffron Biology and Technology 739. Sharma, P., Bhatt, D., Zaidi, M., Saradhi, P. P., Khanna, P. and Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225-2233. Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H. and Gong, H. (2014). Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 78, 27-36. Siddiqui, M. H. and Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1), 13-17. Struyf, E., Smis, A., Van Damme, S., Garnier, J., Govers, G., Van Wesemael, B., Conley, D.J., Batelaan, O., Frot, E., Clymans, W., et al.( 2010) Historical land use change has lowered terrestrial silica mobilization. Nature Communication., 1(1):1-7. Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K. and Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70-81. Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L. and Bracale, M. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. Plos One, 8(7),68-75. Vurdu, H. (2003). Room table: agronomical and biotechnological approaches for saffron improvement. Paper presented at the I International Symposium on Saffron Biology and Biotechnology 650. Yanishlieva-Maslarova, N. and Heinonen, I. (2001). Sources of natural antioxidants: vegetables, fruits, herbs, spices and teas. Antioxidants in Food, Practical Applications, 210-266.
| ||
آمار تعداد مشاهده مقاله: 603 تعداد دریافت فایل اصل مقاله: 709 |