تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,492,203 |
تعداد دریافت فایل اصل مقاله | 8,884,449 |
مقاله پژوهشی: قیمت گذاری اختیار معامله با روش تحلیلیِ جدید برای معادله بلک شولز | ||
راهبرد مدیریت مالی | ||
مقاله 6، دوره 7، شماره 3 - شماره پیاپی 26، آبان 1398، صفحه 135-155 اصل مقاله (871.19 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2019.21835.1763 | ||
نویسندگان | ||
مهدی ابوالی* 1؛ مریم خلیلی عراقی2؛ حسن حسن آبادی3؛ احمد یعقوب نژاد4 | ||
1دانشجوی دکتری، گروه مالی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
2استادیار، گروه مالی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
3استاد تمام، گروه فیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
4دانشیار، گروه حسابداری، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
تئوری قیمتگذاری بلکشولز، یکی از شیوههای مهم ارزشگذاری اوراق اختیار معامله میباشد. این معادله جهت قیمتگذاریِ انواع اختیارهای خرید و فروش اروپائى استفاده میشود. در این مقاله با تمرکز بر معادلهی شرودینگرگونه اصلیِ بلکشولز و حل این معادله با روش نیکیوورو - اوواروف، روشی متفاوت و جدید برای اثبات و بهبود معادلهی بلکشولز ارزیابی گردید. در ادامه، ضمن بررسی امکان بهبود معادله بلکشولز با این روش، معادلهای جدید برای قیمتگذاری اختیار معامله ارائه و آزمون گردید. افزایش دقت قیمت-گذاریِ معاملههای اختیار با استفاده از معادلهی ارائه شده بویژه برای معاملههای با بهای بالا، بررسی حل منطقی به روشی جدید، قابلیت مقایسه خروجی با حل عددی و نوآوری فرمول نهایی اختیار برحسب توابع چند جملهای لاگر، از اهداف انجام پژوهش حاضر میباشند. نتایج نشان داد؛ امکان اثباتی متفاوت برای معادلهی بلکشولز از طریق حل معادله دیفرانسیل به روش نیکیوورو – اوواروف امکانپذیر بوده و در سطح اطمینان 95 درصد، بین قیمتگذاریِ دو گروه اصلی بلکشولز و مدل جدید ارائهشده، تفاوت معنیداری وجود ندارد. بهمنظور مقایسهی بین خروجیِ مدل جدید و مدل اصلیِ بلکشولز از اطلاعات 50 اختیار معامله سکه در فرابورس ایران محدود به بازه زمانی 1394 لغایت 1397 استفاده و از آزمون مقایسهای دو گروه مستقل ناپارامتریکِ منویتنی استفاده گردید. | ||
کلیدواژهها | ||
اختیار معامله؛ معادله بلک شولز؛ معادله شرودینگرگونه و روش نیکی وورو – اووراروف | ||
عنوان مقاله [English] | ||
Optional trading pricing with a new analytic method for the Black Scholes equation | ||
نویسندگان [English] | ||
Mehdi Abvali1؛ Maryam Khaliliaraghi2؛ Hasan Hasanabadi3؛ Ahmad Yaghoobnezhad4 | ||
1Ph.D. Student, Department of Finance, Research Branch, Islamic Azad University, Tehran, Iran | ||
2Assistant Professor, Department of Finance, Research Branch, Islamic Azad University, Tehran, Iran | ||
3Professor, Department of Physics, Shahroud University of Technology, Shahroud, Iran | ||
4Associate professor, Department of Accounting, Islamic Azad University, Central Tehran Branch, Iran | ||
چکیده [English] | ||
The Black-Scholes pricing theory is one of the most important ways of valuating transaction options. This equation is used to pricing a variety of European options. In this paper, a new and different method was developed to prove and improve the Black-Scholes equation by focusing on the Black-Scholes main Schrödinger equation and solving this equation using the Nikkeuro-Ovaryov method. In the following, while investigating the possibility of improving the Black-Scholes equation with this method, a new equation for the pricing of transaction options was presented and tested. Increasing the accuracy of pricing arbitrary deals by using the equation provided, especially for high-value trades, checking logical solution in a new way, comparing output with numerical solution and innovating. Final formula. Option based on Lagrange polynomial functions, the goals of doing research are present. The results showed a different positive probability for the Black-Scholes equation by solving the differential equation by the method Nikkirovo-Ovaryov is feasible and at 95% confidence level, there is no significant difference between the price of the two main black-hole groups and the new model. In order to compare the output of the new model with the Black Sholes main model, information from the 50 Coin Deal options in Iran's Overseas Branch was limited to the 1394 to 1397 period and the Mann-Whitney independent nonparametric group was used to compare. | ||
کلیدواژهها [English] | ||
The bargaining power, the Black Scholes equation, the Schrödinger equation and the method Nikyevro - Ovaryov | ||
مراجع | ||
- خلیلیِعراقی مریم و همکاران. (1395). "قیمتگذاری اوراق تبعی با استفاده از مدل هستون". پایاننامه کارشناسی ارشد، دانشگاه علوم تحقیقات تهران، صص 30 - 80. - جلوداری ممقانیپیکر. (1391). "محاسبه ارزش اختیار به روش گیلز". پژوهشنامه اقتصادی، تهران، صص 8-15. - خضریپور قرایی، رشید ستاردباغی، صفا و قاسمی. (1391). "یک مقایسه از روشهای شبیهسازی مونت کارلو و تفاضلات متناهی در ارزشگذاری اختیار معاملات توأم با مانع دوتایی در حالت گسسته". سومین کنفرانس ریاضیات مالی و کاربردها، تهران، صص 12 – 21. - سروستانی سلیمانی. ابراهیمی. (1391). "روش درخت دوجملهای برای قیمتگذاری اختیارات آسیایی در مدل پرش". سومین کنفرانس ریاضیات مالی و کاربردها. تهران. صص 8-13. - خاکی غلامرضا. (1391). "روش پژوهش با رویکردی به پایاننامه نویسی". تهران، انتشارات بازتاب چاپ سوم. - هال جان. (1388). "مبانی مهندسی مالی و مدیریت ریسک". ترجمه سجاد سیاح و علی صالحآبادی، تهران، چاپ دوم، شرکت کارگزاری مفید. - دلاور علی. (1373). "روشهای پژوهش در روانشناسی و علوم تربیتی". تهران، مرکز چاپ و انتشارات دانشگاه پیام نور، چاپ پنجم. - Khalili, Iraqi,. M., et al. (2016). Pricing of subordinate bonds using the Heston model. (Unpublished master’s thesis). Islamic Azad University, Science and Research Branch, Iran. (in Persian) - Jelodari Mamaghani, M. (1391). Calculation of validity values by giles method. Economic Research, 8-15. (in Persian) - Khedzipour, Gharei, Stockbaghi, & Rashid. (2012). A comparison of the Monte Carlo simulation methods and finite differences in the valuation of discrete double-ended dummy transactions. Third Conference on Mathematical Finance and Applications, Tehran, 12-21. (in Persian) - Sarvestani, Khadija, Soleimani, & Ebrahimi. (2012). Binomial tree method for pricing Asian options in jump model. Third Conference on Mathematical Finance and Applications, Tehran, 8-13. (in Persian) - Khaki, G. (2012). "esearch method with a thesis approach (3rd ed.). Tehran, Iran: Baztab Publishing House. (in Persian) - Hall, J. (1388). "Fundamentals of Financial Engineering and Risk Management". Translation by Sajjad Seyah and Ali Saleh Abadi, Tehran, Second Edition, Brokerage Company. (in Persian) - Delawar, A. (1994). Research methods in psychology and educational sciences (5th ed.). Tehran, Iran: Payame Noor University Press and Publishing Center. (in Persian) - Alghalith, M. (2018). Pricing the American options using the Black-Scholes pricing formula. Physica A, 443 -450. - Sturm, Matthew., Goldstein, Henry. Huntington, Thomas. (2017). Using the pricing model approach to assess strategic decisions in turbulent environments: Black Scholes and airborne changes. Climatic Change, 2, 437–449. - Ivanov, R. (2015). The maximum gamma-ray variance distribution process and the pricing path of the options. European Finance, 2, 979-993. - Alghalith, M. (2014). Pricing options: A very simple formula. Dorsoduro, 20(2), 71-73. - Kumar, S., Kumar, D., & Singh, J. (2014). Numerical computation of fractional Black-Scholes equation arising in financial market. Egyptian Journal of Basic and Applied Sciences, 1(3-4), 177-183. - Hemantha, A. (2013). Pricing the option of expanding crack with capsules". European Finance. 37(1), 100-121. - Kumar, V. (2013). Experimental competition in pricing options. School of Management, Volume, 19(2), 129-156. - Li, S. (2012). The implicit cost of interactions by the pricing model of lelend's powers. Mathematical Sciences, 18(4), 333-360. - Jean-Pierre, P., & Tashman, A. (2012). Option pricing under the beta stress model. Annals of Finance, 8(2-3), 1-21. - Meng, L., & Wang, M. (2010). Comparison of the Beckhelsell formula with the frequency Black-Scholes formula in the exchange derivatives market by changing the oscillation.Basic and Applied Sciences, 99–111. - Ahn, J., Kang, S., & Kwon, Y. H. (2010). A Laplace transform finite difference method for the Black-Scholes equation. Mathematical and Computer Modelling, 5, 247-255. - Bohner, M., & Zheng, Y. (2009). On analytical solutions of the Black-Scholes equation. Applied Mathematics Letters, 22(3), 309-313. - Madan, M. (2008). Combination of Black Schulz formulas with Brownian motion and limited connections. Applied Mathematics, 15(2), 97-115. - Broadie, M., & Jain, A. (2008). Key variables fluctuations in pricing models of transaction options and risk management. Economics and Organization, 7(4), 7-24. - Christoffersen, P., Jacobs, K., & Ornthanalai, C. (2008).Option valuation with long-run and short-run volatility components. Journal of Financial Economics, Vol. 90, No. 3, pp. 272-297 - Chen, X., & Wan, J.-P. (2007). Pricing options to change the route of the Levy model under the MEM. Mathematical Statistics, 23(4), 651-664. - Olga,S. (2007). The approximation of solutions and derivatives to the Black-Scholes equation doubles with unhealthy initial data. Engineering Sciences, 47(3), 442-462. | ||
آمار تعداد مشاهده مقاله: 3,272 تعداد دریافت فایل اصل مقاله: 1,784 |