تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,623,460 |
تعداد دریافت فایل اصل مقاله | 8,986,162 |
اثر ویتامین E (آلفا توکوفرول) بر برخی از شاخصهای فیزیولوژیکی و بیوشیمیایی گیاه تنباکوNicotiana rustica L.)) تحت تنش شوری در کشت در شیشه | ||
زیست شناسی کاربردی | ||
مقاله 7، دوره 31، شماره 4 - شماره پیاپی 58، اسفند 1397، صفحه 81-99 اصل مقاله (507.08 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2019.4226 | ||
نویسندگان | ||
عرفانه شفیعیون1؛ علی اکبر احسانپور* 2 | ||
1کارشناسی ارشد، گروه زیست شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان | ||
2استاد، گروه زیست شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان | ||
چکیده | ||
توکوفرولها که تحت عنوان ویتامین Eشناخته میشوند، مولکولهای آمفیپاتیکی هستند که به عنوان آنتیاکسیدان قادر به حذف گونههای فعال اکسیژن میباشند. در این پژوهش، گیاه تنباکو به مدت چهار هفته در محیط MS حاوی غلظتهای صفر، 100 و 200 میلیمولار NaCl به همراه غلظتهای، 100، 200 و 400 میلیگرم بر لیتر ویتامین E رشد داده شد و سپس شاخصهای رشد از جمله وزن تر و خشک, میزان رنگیزههای فتوسنتزی، شامل کلروفیل a، b، کلروفیل کل، کاروتنوئیدها، غلظتهای سدیم و پتاسیم، میزان پرولین، ترکیبات فنلی ، قند محلول، آنتوسیانین و پروتئین کل، مورد بررسی قرار گرفت. نتایج نشان داد که افزایش غلظت آلفاتوکوفرول سبب افزایش معنیدار وزن تر و خشک گیاهو افزایش میزان رنگیزههای فتوسنتزی و نیز پتاسیم و کاهش سدیم گردیده است. علاوه بر این، تیمار آلفاتوکوفرول سبب افزایش میزان پرولین، ترکیبات ترکیبات فنلی کل، قند محلول و آلفاتوکوفرول داخلی گیاه در تنش شوری شد. همچنین میزان پروتئین گیاه فقط توسط بالاترین غلظت آلفاتوکوفرل افزایش یافت. به نظر میرسد تیمار ویتامین E با تغییر برخی از شاخصهای فیزیولوژیکی منجر به افزایش تحمل به شوری گیاه تنباکو گردیده است. | ||
کلیدواژهها | ||
: آلفاتوکوفرول؛ تنش شوری؛ شاخصهای رشد؛ گیاه تنباکو | ||
عنوان مقاله [English] | ||
Effect of vitamin E (alpha-tocopherol) on some physiological & biochemical parameters of tobacco plant (Nicotiana rustica L.) under in vitro salt stress | ||
نویسندگان [English] | ||
Erfaneh Shafiyon1؛ Ali Akbar Ehsan Pour2 | ||
1M.Sc., Department of Biology, Faculty of Science, University of Isfahan, Isfahan | ||
2Professor, Department of Biology, Faculty of Science, University of Isfahan, Isfahan | ||
چکیده [English] | ||
Tocopherols, identified as vitamin E, are amphipathic molecules known as antioxidant & able to remove ROS in lipophilic conditions. In this study, tobacco plants were cultured on MS medium containing concentrations of 0, 100, 200 mM NaCl supplemented with 0, 100, 200 & 400 mg.L ˉ1 α-tocopherol for 4 weeks. Then growth parameters including fresh & dry weight, photosynthetic pigments including chlorophyll a, b, total chlorophyll & carotenoids, sodium & potassium, proline, total phenol, soluble sugar, anthocyanins, & total protein were measured. The results showed that, increasing of α-tocopherolconcentrations increased fresh & dry weight of plants & the amount of photosynthetic pigments, proline, soluble sugar, total phenol, anthocyanins & potassium while, amount of sodium was decreased significantly.Protein content increased by the highest concentration of α-tocopherol. It seemed that, treatment with vitamin E by changing physiological parameters increased salt tolerance of tobacco plant. | ||
کلیدواژهها [English] | ||
α-tocopherol, Growth parameters, Salt stress, Tobacco plant | ||
مراجع | ||
Abdelhamid, M.T., Shokr, M.M., Bekheta, M. (2010) Growth, root characteristics, & leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their Broomrape tolerance & the Soil properties in relation to salinity. Communications in Soil Science & Plant Analysis 41:2713-2728. Abo-Kassem, E. (2007) Effects ofsalinity: Calcium interaction on growth & nucleic acid metabolism in five species of Chenopodiaceae". Turkish Journal of Botany 31:125-134. Alcázar, R., Marco, F. Cuevas, J.C. Patron, M. Ferr&o, A. Carrasco, P. Tiburcio, A.F. Altabella, T. (2006) Involvement of polyamines in plant response to abiotic stress". Biotechnology Letters 28:1867-1876. Ashraf, M. (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27:84-93. Ashraf, M. Harris, P. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science 166:3-16. Ashraf, M., Mukhtar, N. Rehman, S. Rha, E. (2004) Salt-induced changes in photosynthetic activity & growth in a potential medicinal plant Bishop’s weed (Ammi majus L.). Photosynthetica 42:543-550. Bates, L., Waldren, R. Teare, I. (1973) Rapid determination of free proline for water-stress studies. Plant & Soil 39:205-207. Blumwald, E. Aharon, G.S., Apse, M.P. (2000) Sodium transport in plant cells". Biochimica et Biophysica Acta Biomembranes 1465:140-151. Bradford, M.M. (1976) A rapid & sensitive method for the quantitationof microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. Chen, T.H. & Murata, N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines & other compatible solutes. Current Opinion in Plant Biology 5:250-257. Dasilva, E.J. Jensen, A. (1971) Content of α-tocopherol in some blue-green algae. Biochimica et Biophysica Acta Lipids & Lipid Metabolism 239:345-347. Datta, K., Vasquez, A., Tu, J. Torrizo, L. Alam, M. Oliva, N. Abrigo, E. Khush, G. Datta, S. (1998) Constitutive & tissue-specific differential expression of the cryIA (b) gene in transgenic rice plants conferring resistance to rice insect pest. Theoretical & Applied Genetics 97:20-30. Doğan, M. (2013) Antioxidative & proline potentials as a protective mechanism in soybean plants under salinity stress. African Journal of Biotechnology 10:5972-5978. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P. Smith, F. (1956) Colorimetric method for determination of sugars & related substances. Analytical Chemistry 28:350-356. El-Lethy, S.R., Abdelhamid, M.T. Reda, F. (2013) Effect of potassium application on wheat (Triticum aestivum L.) cultivars grown under salinity stress. World Applied Sciences Journal 26:840-850. El-Samad, H.A. Shaddad, M. Barakat, N. (2011) Improvement of plants salt tolerance by exogenous application of amino acids. Journal of Medicinal Plants Research 5:5692-5699. Fang, Z., Bouwkamp, J.C. Solomos, T. (1998) Chlorophyllase activities & chlorophyll degradation during leaf senescence in non-yellowing mutant & wild type of Phaseolus vulgaris L. Journal of Experimental Botany 49:503-510. Fedina, L., Popova, A. (1996) Photosynthesis, photorespiration & proline accumulation in water-stressed pea leaves. Photosynthetica 32:213-220. Foyer, C.H., Noctor, G. (2003) Redox sensing & signalling associated with reactive oxygen in chloroplasts, peroxisomes & mitochondria. Physiologia Plantarum 119:355-364. Foyer, C.H., Noctor, G. (2005) Redox homeostasis & antioxidant signaling: a metabolic interface between stress perception & physiological responses. The Plant Cell 17:1866-1875. Foyer, M. (1992) The antioxidant effect of tylakoid vitamin E. Plant Cell Environment 15:381-392. Fryer, M.J. (1993 (Evidence for the photoprotective effects of vitamin E. Photochemistry & Photobiology 58:304-312. Good, A.G., Zaplachinski, S.T. (1994) The effects of drought stress on free amino acid accumulation & protein synthesis in Brassica napus. Physiologia Plantarum 90:9-14. Gossett, D.R., Millhollon, E.P., Lucas, M. (1994) Antioxidant response to NaCl stress in salt-tolerant & salt-sensitive cultivars of cotton. Crop Science 34:706-714. Grusak, M.A., DellaPenna, D. (1999) Improving the nutrient composition of plants to enhance human nutrition & health 1. Annual Review of Plant Biology 50:133-161. Hasanuzzaman, M., Hossain, M.A., Fujita, M. (2011b) Selenium-induced up-regulation of the antioxidant defense & methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research 143:1704-1721. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000) Plant cellular & molecular responses to high salinity. Annual Review of Plant Biology 51:463-499. Horvath, G., Wessjohann, L., Bigirimana, J., Jansen, M., Guisez, Y., Caubergs, R., Horemans, N. (2006) Differential distribution of tocopherols & tocotrienols in photosynthetic & non-photosynthetic tissues. Phytochemistry 67:1185-1195. Hossain, M.A., Hasanuzzaman, M., Fujita, M. (2011) Coordinate induction of antioxidant defense & glyoxalase system by exogenous proline & glycinebetaine is correlated with salt tolerance in mung bean. Frontiers of Agriculture inChina 5:1-14. Hugly, S., Somerville, C. (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiology 99:197-202. Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Panneerselvam, R. (2007) Calcium chloride effects on salinity-induced oxidative stress, proline metabolism & indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies 330:674-683. Kamal-Eldin, A., Appelqvist, L.Å. (1996) The chemistry & antioxidant properties of tocopherols & tocotrienols. Lipids 31:671-701. Kameli, A. Löselδ, D. (1993) Carbohydrates & water status in wheat plants under water stress". New Phytologist 125:609-614. Kiarostami, K., Mohseni, R. (2010) Biochemical changes of Rosmarinus officinalis under salt stress. Journal of Stress Physiology & Biochemistry6: 114-122. Lattanzio, V., Lattanzio, V.M., Cardinali, A. (2006) Role of phenolics inthe resistance mechanisms of plants against fungal pathogens & insects. Phytochemistry: Advances in Research 661:23-67. Lichtenthaler, H.K. (1987) Chlorophylls & carotenoids: Pigments of photosynthetic biomembrane. Methods in Enzymology 148:350-382. Mahajan, S., Tuteja, N. (2005) Cold, salinity & drought stresses: an overview. Archives of Biochemistry & Biophysics 444:139-158. Munne-Bosch, S. (2005) The role of α-tocopherol in plant stress tolerance. Journal of Plant Physiology 162:743-748. Munné-Bosch, S., Alegre, L. (2002a) The function of tocopherols & tocotrienols in plants. Critical Reviews in Plant Sciences 21:31-57. Narayan, M., Naidu, K.A., Ravishankar. G., Srinivas, L., Venkataraman, L. (1999) Antioxidant effect of anthocyanin on enzymatic & non-enzymatic lipid peroxidation. Prostagl&ins, Leukotrienes & Essential Fatty Acids 60:1-4. Orabi, S.A., Abdelhamid, M.T. (2014) Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacityof anti-oxidative system. Journal of the Saudi Society of Agricultural Sciences. In press Parida, A.K., Das, A.B. (2005) Salt tolerance & salinity effects on plants: a review. Ecotoxicology & Environmental Safety 60:324-349. Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012) Effect of salinity on phenolic composition & antioxidant activity of artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plant 6:245-252. Sadak, M.S., Rady, M., Badr, N., Gaballah, M. (2010) Increasing sunflower salt tolerance using nicotinamide & α-tocopherol. International Journal of Academic Research 2:263-270. Santos, C.V. (2004) Regulation of chlorophyll biosynthesis & degradation by salt stress in sunflower leaves. Scientia Horticulturae 103:93-99. Schneider, C. (2005) Chemistry & biology of vitamin E. Molecular Nutrition & Food Research 49:7-30. Semida, W., Taha, R., Abdelhamid, M., Rady, M. (2014) Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. SouthAfrican Journal of Botany 95:24-31. Seo, Y.S., Kim, S.J., Harn, C.H., Kim, W.T. (2011) Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves & fruits. Phytochemistry 72:321-329. Shao, H.B., Chu, L.Y., Lu, Z.H., Kang, C.M. (2008) Primary antioxidant free radical scavenging & redox signaling pathways in higher plant cells. International Journal of Biological Sciences 4:8-14. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999) Analysis of total phenols & other oxidation substrates & antioxidants by means of folin-ciocalteu reagent". Methods in Enzymology 299:152-178. Soll, J., Schultz, G. (1979) Comparison of geranylgeranyl & phytyl substituted methylquinols inthe tocopherol synthesis of spinach chloroplasts. Biochemical & Biophysical Research Communications 91:715-720. Soltani, Y., Saffari, V.R., Moud, A.A.M., Mehrabani, M. (2012) Effect of foliar application of α-tocopherol & pyridoxine on vegetative growth, flowering, & some biochemical constituents of Calendula officinalis L. plants. African Journal of Biotechnology 11:11931-11935. Tuteja, N., Tuteja, R. (2004) Prokaryotic & eukaryotic DNA helicases. European Journal of Biochemistry 271:1835-1848. Vidi, P.A., Kanwischer, M., Baginsky,S., Austin, J.R., Csucs, G., Dörmann, P., Kessler, F., Bréhélin, C. (2006) Tocopherol cyclase (VTE1) localization & vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. Journal of Biological Chemistry 281:11225-11234. Wagner, G.J. (1979) Content & vacuole/extravacuole distribution of neutral sugars, free amino acids, & anthocyanin in protoplasts. Plant Physiology 64:88-93. Wimmer, M., Mühling, K., Läuchli, A., Brown, P., Goldbach, H. (2003) The interaction between salinity & boron toxicity affects the subcellular distribution of ions & proteins in wheat leaves. Plant, Cell & Environment 26:1267-1274. | ||
آمار تعداد مشاهده مقاله: 1,321 تعداد دریافت فایل اصل مقاله: 570 |