تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,492,960 |
تعداد دریافت فایل اصل مقاله | 8,884,659 |
پیش بینی قیمت سهام با رویکرد ترکیبی شبکه عصبی مصنوعی و الگوریتم رقابت استعماری مبتنی بر تئوری آشوب | ||
راهبرد مدیریت مالی | ||
مقاله 2، دوره 5، شماره 3 - شماره پیاپی 18، آذر 1396، صفحه 27-73 اصل مقاله (1.35 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2017.14635.1319 | ||
نویسندگان | ||
سهیل احمدخان بیگی1؛ ندا عبدالوند* 2 | ||
1دانشجوی کارشناسی ارشد رشته مهندسی فناوری اطلاعات – تجارت الکترونیک، دانشگاه آزاد اسلامی، واحد قزوین | ||
2استادیار، عضو هیأت علمی دانشگاه الزهرا | ||
چکیده | ||
یکی از گزینههای موجود جهت سرمایه گذاری نقدینگی، بورس و اوراق بهادار میباشد. با توجه به ارتباطات غیرخطی موجود میان متغیرهای موثر بر قیمت سهام، شبکه های عصبی مصنوعی یکی از مناسب ترین رویکردهای موجود جهت پیشبینی قیمت سهام می باشند. در این مقاله سعی شده تا از طریق ترکیب نگاشتهای آشوبی و الگوریتم رقابت استعماری، زاویه حرکتی مستعمرات به سمت استعمارگر اصلاح شده و به این ترتیب احتمال قرارگیری در دام نقطه بهینه محلی تا حد ممکن کاهش یابد. هدف این مقاله معرفی و مقایسه عملکرد رویکرد پیشنهادی با سایر الگوریتمهای بهینهسازی جستجوی پیشین میباشد. از اینرو با استفاده از اطلاعات قیمتی روزانه سهام شرکت ایران خودرو بین سالهای 1389 تا 1395 به آموزش شبکه عصبی با الگوریتمهای بهینهسازی مختلف پرداختیم. جهت ارزیابی میزان عملکرد رویکردها، از سه دیدگاه: میزان دقت پیشبینی(آمارههای اندازهگیری خطاR2,RMSE)، میزان حافظه مصرفی و زمان اجرایی استفاده شد، نتایج حاکی از آن است که رویکرد پیشنهادی از عملکرد بهتری نسبت به سایر رویکردهای پیشین برخوردار میباشد. | ||
کلیدواژهها | ||
پیش بینی قیمت سهام؛ شبکه عصبی؛ الگوریتم رقابت استعماری مبتنی بر تئوری آشوب | ||
عنوان مقاله [English] | ||
Stock Price Prediction Modeling Using Artificial Neural Network Approach and Imperialist Competitive Algorithm Based On Chaos Theory | ||
نویسندگان [English] | ||
Sohail AhmadKhanBeygi1؛ Neda Abdolvand2 | ||
1Information technology and e-commerce engineering, electrical, computer and information technology, Azad University of Qazvin | ||
2Assistant Professor/Alzahra University | ||
چکیده [English] | ||
Stock market is one of the options available to invest in liquidity. Investors in this area used a variety of approaches to predict stock prices. But due to the nonlinear relationship between variables affecting stock prices, Artificial Neural Networks are one of the most suitable approaches for this work. These networks, through different search optimization algorithms, try to identify the relationships between these variables. The higher the algorithms used, the higher the efficiency of the algorithms, the more accurate the identification of the relationships between the variables. In this paper, an attempt has been made to combine chaotic maps and colonial competition algorithms with the reform movement angle to the colonial colonies so that we can deal with the possibility of being trapped in local optimum to reduce as much as possible. Therefore, using this approach, it is tried to predict the stock price of Iran Khodro Company. To evaluate the performance of the proposed approach to other conventional approaches of neural network education, three perspectives: the degree of accuracy of prediction, the amount of memory used and the time of execution were used. The results show that the proposed approach has a better performance than other approaches. | ||
کلیدواژهها [English] | ||
Stock Price Forecast, Colonial Competition Algorithm based on Chaos Theory | ||
مراجع | ||
- آتش پز گرگری ، اسماعیل " توسعه الگوریتم بهینه سازی اجتماعی و بررسی کارایی آن"، مهندسی برق-گرایش کنترل- دانشگاه تهران، 1387 - باجلان ، سعید ؛ فلاحپور، سعید ؛ دانا، ناهید. " پیش بینی روند تغییرات قیمت سهم با استفاده از ماشین بردار پیشتیبان وزن دهی شده و انتخاب ویژگی هیبرید به منظور ارائه استراتژی معاملاتی بهینه" راهبرد مدیریت مالی 1395 - منجمی، سید امیر حسین ؛ ابزری، مهدی ، شوازی، علیرضا رعیتی."پیش بینی قیمت سهام در بازار بورس اوراق بهادار با استفاده از شبکه ی عصبی فازی و الگوریتم های ژنتیک و مقایسه آن با شبکه ی عصبی مصنوعی، فصلنامه اقتصاد مقداری بررسی های اقتصادی سابق، 1388 - Atashpaz Gargary Esmael. (2008). Development of Social Organizational Optimization Algorithm and its Performance Evaluation. Electrical Engineering - Control Taught - Tehran University(in persian). - Al-Radaideh, Qasem, A., & Adel Abu Alnagi, E. (2013). Predicting Stock Prices Using Data Mining Techniques. The International Arab Conference on Information Technology. - Ayodele, A. (2012). Stock Price Prediction using Neural Network with Hybridized Market Indicators. Journal of Emerging Trends in Computing and Information Sciences, 3, 2079-8407. - Bajelan, S., Falahpour, S.Dana,N. (2016). Projection of share price changes using a weighted support machine and selecting a hybrid feature to provide an optimal trading strategy. Financial Management Strategy(in persian). - Buza, K., Nagy, G. I., & Nanopoulos, A. (2014). Storage-optimizing clustering algorithms for high-dimensional tick data. Expert Systems with Applications, 41, 4148–4157. - Charles, A., & Darné, O. (2009). The random walk hypothesis for Chinese stock markets: Evidence from variance ratio tests. Economic Systems, 33, 117–126. - Hajizadeh, E., Ardakani, H. D., & Shahrab, J. (2010). Application of data mining techniques in stock markets:A survey. Journal of Economics and International Finance, 2, 109-118. - Lee, T.-S., & Chen, N.-J. (2002). Investigating the information content of non-cash-trading index futures using neural networks. Expert Systems with Applications, 22, 225–234. - Metghalchi, M., Chen, C.-P., & Hayes, L. A. (2015). History of share prices and market efficiency of the Madrid general stock index. International Review of Financial Analysis, 40, 178–184. - Monajemi, A., Abzari, M.Shavazi,A. (2009). Prognosis of Stock Price in the Stock Market Using Fuzzy Neural Network and Genetic Algorithms and Comparison with Artificial Neural Network. Quarterly Journal of Economics, Some ex-economic studies(in persian). - Park, Cheol-Ho; Irwin, Scott H. (2007). WHAT DO WE KNOW ABOUT THE PROFITABILITY OF TECHNICAL ANALYSIS? Journal of Economic Surveys, 21, 786–826. - Talatahari, S., Azar, B. F., Sheikholeslami, R., & Gandomi, A. (2012). Imperialist competitive algorithm combined with chaos for global optimization. Communications in Nonlinear Science and Numerical Simulation, 1312–1319. - Talatahari, S., Azar, B. F., Sheikholeslami, R., & Gandomi, H. (2012). Imperialist competitive algorithm combined with chaos. Commun Nonlinear Sci Numer Simulat, 17, 1312–1319. - Talatahari, S., Kaveh, A., & Sheikholeslami, R. (2012). Chaotic imperialist competitive algorithm for optimum design of truss structures. Structural and Multidisciplinary Optimization, 46, 355–367. - Talataharia, S., Azarb, B. F., Sheikholeslamib, R., & Gandomi, A. (2012). Imperialist competitive algorithm combined with chaos for global optimization. Communications in Nonlinear Science and Numerical Simulation, 1312–1319. - Ticknor, J. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40, 5501–5506. - Wang, & Jian-Zhou. (2011). Forecasting stock indices with back propagation neural network. Expert Systems with Applications, 38, 14346–14355. | ||
آمار تعداد مشاهده مقاله: 2,650 تعداد دریافت فایل اصل مقاله: 2,713 |