تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,624,730 |
تعداد دریافت فایل اصل مقاله | 8,986,794 |
پتانسیل کاربردی زائدات ماهی در بهبود کیفیت کمپوست | ||
زیست شناسی کاربردی | ||
مقاله 5، دوره 37، شماره 2 - شماره پیاپی 80، شهریور 1403، صفحه 50-60 اصل مقاله (1015.42 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.45719.1600 | ||
نویسندگان | ||
مریم سلطانی1؛ مرتضی یوسف زادی* 2؛ نرگس امراللهی بیوکی3؛ موسی کشاورز4؛ عبدالمجید میرزاعلیان دستجردی5 | ||
1دانشجوی دکترا .گروه زیست شناسی- دانشکده علوم فنون دریایی- دانشگاه هرمزگان | ||
2استاد،دانشکده زیست شناسی -دانشگاه قم-ایران | ||
3دانشیار .گروه زیست شناسی- دانشکده علوم فنون دریایی- دانشگاه هرمزگان | ||
4دانشیار ،گروه زیست شناسی- دانشکده علوم فنون دریایی- دانشگاه هرمزگان | ||
5دانشیار ،گروه کشاورزی- دانشکده کشاورزی- دانشگاه هرمزگان | ||
چکیده | ||
مدیریت صحیح زائدات ماهی در صنعت ماهیگیری و فرآوری اهمیت بالایی دارد. بنابراین، ارائه روش و استراژیها موثر برای مدیریت زائدات ضروری است. کمپوست حاوی مواد مغذی به عنوان یکی از روشهای مناسب در نظر گرفته شدهاست. در این راستا، هدف از این پژوهش تاثیر کمپوست زائدات ماهی به عنوان یک کود سازگار با محیط زیست بر رشد و عملکرد گیاه مدل تربچه قرمز، تاثیر آن برروی فعل و انفعالات فلزات سنگین و فعالیت آنزیمی کاتالاز بود.دو آزمایش با ۳ تیمار و سه تکرار در شرایط گلخانه و گلدان انجام شد. در آزمایش اول تاثیر کمپوست 20 و 50 درصد بر روی صفات مورفولوژیکی گیاه تربچه مورد بررسی قرار گرفت و در آزمایش دوم کمپوست 50 درصد با توجه به صفات مورفولوژی گیاه انتخاب شد و خصوصیات فعالیت آنزیم کاتالاز و حذف فلز سنگین مورد سنجش قرار گرفت. نتایج و بحث: نتایج نشان داد که استفاده از کمپوست با درصد ۵۰، منجر به بهبود وزن تر و خشک برگ، غده و میزان پرولین(5، 05/0، 6/6، 91/1 گرم و 65/1 µ mol g-1DW) گیاه شد. همچنین، کمپوست ۵۰ درصد باعث کاهش فعالیت فلز کادمیوم (21/0 میلی گرم بر کیلوگرم) و افزایش فعالیت آنزیمی کاتالاز(34 میکرومول پراکسید هیدروژن بر گرم-ساعت) شد. استفاده از کمپوست زائدات ماهی میتواند بهبود خاک و کاهش فعل و انفعالات فلزات سنگین را در کشاورزی ایجاد کند. براساس این نتایج کمپوست 50 درصد زائدات ماهی میتواند شرایط حاصلخیزی و کاهش فعل و انفعالات فلزات سنگین را جهت آماده سازی خاک برای رشد گیاهان را فراهم کند. | ||
کلیدواژهها | ||
کلمات کلیدی: کمپوست؛ فلزات سنگین؛ کاتالاز؛ پرولین؛ تربچه؛ ضایعات ماهی | ||
عنوان مقاله [English] | ||
Application potential of fish waste in improving compost quality | ||
نویسندگان [English] | ||
maryam soltani1؛ Morteza Yousefzadi2؛ narges amroallahi bioki3؛ musa keshavarz4؛ abdol,majid mirzaaliandastjerdy5 | ||
1MSC.Faculty of Marine Science and Technology, University of Hormozgan , Hormozgan, Iran. | ||
2Professor, Faculty of Science University of Qom, Qom, Iran | ||
3Associate Professor,Faculty of Marine Science and Technology,University of Hormozgan, Hormozgan, Iran. | ||
4Associate Professor.Department of Biology - Faculty of Marine Science - University Hormozgan | ||
5Associate Professor.Department of Agriculture - Faculty of Agriculture and Natural Resources,University of Hormozgan , Hormozgan, Iran. | ||
چکیده [English] | ||
Introduction: The appropriate management of fish waste is crucial in the fishing and processing industry, necessitating effective waste management strategies. Composting, which is rich in nutrients, is a well-regarded method. This study aimed to assess the impact of fish waste compost, an eco-friendly fertilizer, on the growth and performance of red radish plants, as well as its influence on heavy metal interactions and catalase enzyme activity. Methods: Under greenhouse and pot conditions, two studies with three treatments and three replications were carried out. In the first experiment, the effects of 20% and 50% compost on the morphological traits of radish plants were examined. In the second experiment, 50% compost was chosen based on the plant's morphological traits, and the characteristics of heavy metal removal and catalase enzyme activity were assessed. Results and discussion: Results demonstrated that the use of 50% compost led to notable improvements in the fresh and dry weights of leaves and tubers, alongside increased proline content (5g, 0.05g, 6.6g, 1.91 µmol g-1 DW) in the plants. Furthermore, the 50% compost reduced cadmium activity (0.21 mg/kg) and enhanced catalase enzyme activity (34 µmol hydrogen peroxide/g-hour). Employing fish waste compost has the potential to enhance soil quality and decrease the impact of heavy metals in agricultural settings, ultimately facilitating an optimal environment for plant growth. | ||
کلیدواژهها [English] | ||
Keywords: Compost, Heavy Metals, Catalase, Proline, Radish, Fish Waste | ||
مراجع | ||
Aung, L.H., Flick, G.J., Buss, G.R., Aycock, H.S., Keefer, R.F., Singh, R., Brandon, D.M., Griffin, J.L., Hovermale, C.H. and Stutte, C.A., 1984. Growth responses of crop plants to fish soluble nutrients fertilization. Ahmad, R., Jilani, G., Arshad, M., Zahir, Z.A. and Khalid, A., (2007). Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Annals of microbiology, 57(4), pp.471-479. Arif, M.S., Riaz, M., Shahzad, S.M., Yasmeen, T., Ashraf, M., Siddique, M., Mubarik, M.S., Bragazza, L. and Buttler, A., 2018. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Science of the Total Environment, 619, pp.517-527. Awasthi, S.K., Sarsaiya, S., Awasthi, M.K., Liu, T., Zhao, J., Kumar, S. and Zhang, Z., (2020). Changes in global trends in food waste composting: Research challenges and opportunities. Bioresource technology, 299, p.122555. Bates, L. S., WALDREN, R. P. & TEARE, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. Barthod, J., Rumpel, C. and Dignac, M.F., (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), pp.1-23. Bhardwaj, D., Ansari, M.W., Sahoo, R.K. and Tuteja, N., (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13, pp.1-10. Bukhat, S., Manzoor, H., Athar, H. U. R., Zafar, Z. U., Azeem, F. and Rasoul, S. (2020) Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. Journal of Plant Growth Regulation 39: 809-822. Chang, K.H., Wu, R.Y., Chuang, K.C., Hsieh, T.F. and Chung, R.S., (2010). Effects of chemical and organic fertilizers on the growth, flower quality and nutrient uptake of Anthurium andreanum, cultivated for cut flower production. Scientia Horticulturae, 125(3), pp.434-441. Chen Y, De-Nobili M and Aviad M. Stimulatory effects of humic substances on plant growth. (2004). Soil Organic Matter in Sustainable Agriculture. CRC Press, Boca Raton, Florida, , pp: 103 - 29 Clemente, R., Bernal, M.P., (2006). Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 64, 1264-1273 Cottenie, A., M. Verlod, L. Kiekens, G. Velghe and R. Camerlynck. (1982). Chemical analysis of plant and soils. Laboratory of Analytical and Agrochemistry, State University of Ghent, Belgium. Garau, G., Porceddu, A., Sanna, M., Silvetti, M., Castaldi, P. (2019a). Municipal solid wastes resource for environmental recovery: Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. Ecotoxicol. Environ. Saf. 174, 445-454. Garau, M., Garau, G., Diquattro, S., Roggero, P.P. and Castaldi, P. (2019b). Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicology and Environmental Safety, 186, p.109766. Gusiatin, Z. M., and Kulikowska, D. (2016). Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environmental technology, 37(18), 2337-2347. Ghosh, P. K., Ramesh, P., Bandyopadhyay, K. K., Tripathi, A. K., Hati, K. M., Misra, A. K., & Acharya, C. L. (2004). Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance. Bioresource technology, 95(1), 77-83. Jahangir, M.M.R., Bell, R.W., Uddin, S., Ferdous, J., Nasreen, S.S., Haque, M.E., Satter, M.A., Zaman, M., Ding, W., Jahiruddin, M. and Müller, C., )2022(. Conservation agriculture with optimum fertilizer nitrogen rate reduces GWP for rice cultivation in floodplain soils. Frontiers in Environmental Science, 10, p.853655. Kushwah, L., Sharma, R.K., Kushwah, S.S. and Singh, O.P.( 2020). Influence of organic manures and inorganic fertilizers on growth, yield and profitability of radish (Raphanus sativus L.). Annals of Plant and Soil Research, 22(1), pp.14-18. Lanno, M., Silm, M., Shanskiy, M., Kisand, A., Orupõld, K., and Kriipsalu, M. (2020). Open windrow composting of fish waste in Estonia. Agronomy Research 18(4), 2465–2477, 2020 Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., ... and Luo, Y. (2017). Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 181, 281-288. Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z. and Lin, W., )2019(. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PloS one, 14(5), p.e0217018. Loeppert, R.H. and Suarez, D.L., )1996(. Carbonate and gypsum. Methods of soil analysis: Part 3 chemical methods, 5, pp.437-474. Pal, G.K. and Suresh, P.V.(2016). Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innovative food science and emerging technologies, 37, pp.201-215. Radziemska, M., Vaverková, M.D., Adamcová, D., Brtnický, M. and Mazur, Z. (2019). Valorization of fish waste compost as a fertilizer for agricultural use. Waste and Biomass Valorization, 10(9), pp.2537-2545. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R. and Lehmann, J., )2012(. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, pp.271-284. Roychowdhury, D., Mondal, S., and Banerjee, S. K. (2017).The effect of biofertilizers and the effect of vermicompost on the cultivation and productivity of maize-a review. Adv. Crop Sci. Technol, 5(01), 1-4. Salehi, M. and Safaiee, M., )2019(. The effect of applying organic fertilizer with fish and shrimp origin on some quantitative and qualitative traits of Carthamus tinctorius L. Journal of Crop Production, 11(4), pp.135-146. Shenbagavalli, S., and Ponmani, T. P. (2020). Effect of Fishwaste compost on nutrient content and uptake of black gram. Tartoura, K.A., 2010. Alleviation of oxidative-stress induced by drought through application of compost in wheat (Triticum aestivum L.) plants. Am. J. Agric. Environ. Sci, 9, pp.208-216. Zhang, J., Zeng, G., Chen, Y., Yu, M., Yu, Z., Li, H., and Huang, H. (2011). Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource technology, 102(3), 2950-2956. Zhang, M., Heaney, D., Henriquez, B., Solberg, E. and Bittner, E. (2006). A fouryear study on influence of biosolids/MSW cocompost application in less productive soils in Alberta: nutrient dynamics. Compost Sci. Util. 14(1): 68–80. Zhao, K., Wang, N., Jiang, S., Li, F., Luo, S., Chen, A., Li, H., Lin, X., Zhang, J., Zhang, L. and Huang, H., (2022). Potential implications of biochar and compost on the stoichiometry-based assessments of soil enzyme activity in heavy metal-polluted soils. Carbon Research, 1(1), p.29. | ||
آمار تعداد مشاهده مقاله: 93 تعداد دریافت فایل اصل مقاله: 95 |