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Rising temperature plays a significant role in global warming and has consequences on 
human health conditions, ecosystems, energy etc. Hence, studying and monitoring its 
states will help scientists seek solutions to prevent its harmful effects. In this study, we 
investigated the Earth's surface temperature anomaly fluctuations by fractal analysis. 
We gathered the temperature anomaly dataset including land and sea surface 
temperatures. The maximum, minimum, and average temperatures of each year were 
investigated. Furthermore, we used multifractal detrended fluctuation analysis (MF-
DFA) to figure out whether these fluctuations appear randomly or follow a rule. By 
removing the trend and applying the MFDFA on data, the Hurst exponent obtained as 
𝐻 = 0.83 ± 0.02, which means a positive long-term correlation exists among data that 
causes the increasing trend. Besides, the scalability exponent, 𝜏(𝑞), and the singularity 
spectrum, 𝑓(𝛼), were plotted, and both of them approved the multifractality for the 
temperature dataset. To discover what is the cause of multifractality, the main, 
shuffling, and surrogating data were evaluated. The results depicted both the long 
correlation for small and large fluctuations and the distribution deviation from Gaussian 
distribution have effects on the multifractal behavior of the data, but according to the 
graph, the long correlation is more effective. 
 

1 Introduction 

 One of the most prominent criteria for agriculture, 
environment, and meteorology is the temperature of the 
Earth [1, 2], which is also the most significant 
component of global warming [3]. When the Sun's rays 
reach the Earth's surface, a few percent of it reflects, and 
the remaining percent is absorbed by molecules of 
oceans and air, which helps Earth to get warmer and be 
a comfortable place for living [3]. Over the past 100 
years, the Earth has become abnormally warmer by 
about 0.6 degrees Celsius [4] which is the reason for 
severe drought, famine, flood. This will predict global 

warming in ~ 2100 which may cause more natural 
disasters, severe droughts, scorching heat, and terrible 
storms [4].  
 According to the news, more countries are worried 
about climate change and global warming because this 
case affects life on land and sea. So it is noteworthy that 
the importance of climate change and research on this 
issue leads to understanding and predicting the future 
weather while being aware of how badly natural 
disasters will occur and how to reduce their impacts. 
Scientists use data from plants, glaciers, and other 
samples to determine the reasons for these phenomena, 
and their researches confirm that human activities have 
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a significant impact [5]. During the COVID-19 
lockdown, climate change seemed to heal due to the less 
demand for conventional energy sources [6], which can 
be a clue to use more renewable energy. Earth's surface 
temperature is obtained by combining land surface 
temperature and ocean surface temperature. Satellite 
observational results may also include. 

 In this paper, we investigate the dataset collected by 
NASA's Goddard Institute for Space Studies1 
(GISTEMP), which is available at [7]. Other 
organizations also collect temperature datasets, but the 
GISS has more comprehensive coverage than the others 
(the cover of the GISS is 99 percent) [8, 9]. It is 
noticeable that none of these organizations measure the 
absolute temperature but measure the temperature 
anomaly. The temperature anomaly is considered as 
follows: whenever in a climatic period, for example, in 
30 years, the statistical temperatures do not differ 
significantly and present stable behavior, this period 
considers the climatic norm. When the temperature 
values deviate from this norm, they are considered an 
anomaly. The measuring temperature during 1951-1980 
is the climatic norm period [8]. The reason for using 
temperature anomalies is that the actual temperature 
measurements are often difficult to collect, many areas 
in the world have a small number of recording stations, 
and temperature inevitably estimates in larger zones, 
which reduces the accuracy of the measurement. The 
usage of anomaly temperature provides a more accurate 
description in a larger zone than the actual temperature 
[9]. 

 Several statistical examinations have been 
implemented on GISTEMP data to find the effects of 
rising temperatures. For instance, on underlying 
tectonic movements through earthquakes, which 
revealed there is a bidirectional causality between them 
[10] or discovering a cross-correlation between surface 
temperature and solar activity which deducted how 
many years solar activity influences surface 
temperature [11]. Moreover, numerous statistical 
modelings have been performed, like auto-regression 
[12], Bayesian [13], and Sliced Functional Time Series 
[14] models on the GISTEMP data to find the best 
fitting models and capture the behavior of time series. 
Generally, analyzing the specific region's temperature 
of the world [15, 16, 17] or the global temperature [18, 

 
1 GISS 

19] deducted two same results. The first is that the 
temperature dataset is non-stationary, and the second is 
a positive long-term correlation between data. By just 
plotting the data based on time Fig. 1a, it is observed 
that the temperature rises considerably, which by 
previous explorations, we know has some form of 
devastating consequences such as the melting of 
glaciers and rising sea levels, the scarcity of healthy 
water and food, the extinction of animal species, and 
many others [2]. 

 Many natural processes surrounding us are not defined 
as simple as linear equations. They are classified as 
complex systems because understanding their behavior 
is complicated. The approach to studying them is based 
on nonlinear equations. One of these processes is the 
time series, in which the variables change through the 
time scale. Due to the variation of Earth's surface 
temperature anomaly values during the time, they are as 
the time series classification. Fractal analysis is a 
beneficial tool to investigate time series fluctuations 
[20]. Fractals were first introduced in the late 1960s by 
B. B. Mandelbrot and used for objects with complex 
geometry when no proper dimensions were found [21]. 

 Fractal analysis helps us understand important 
scientific concepts such as the growth of bacteria, 
patterns of snowflakes, brain waves, et Cetra, and 
investigate their causes of behaviors [22]. Here we use 
the multi-fractal detrended fluctuation analysis (MF-
DFA) because it is an almost complete method for 
investigating single-fractal or multi-fractal behaviors, 
the cause of the behaviors, and the type of the dataset 
correlation [22].  

2 Methodology 

 Fractal geometry consists of algorithms that are 
converted into regular shapes, structures, and images by 
computers. The foundation of fractal geometry depends 
on the assumption that natural figures are identical and 
created from the lawful repetition of an initial block 
[23]. The random processes in nature generate self-
similar or self-affine fractals in which any irregularity 
results in multi-affinity. Time series of fluctuating 
values of a stock price, atmospheric pressure and 
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temperature, relative humidity, and hemodynamics are 
some examples [22, 23]. 

2.1 Multi-fractal detrended fluctuation analysis 

 The detrended fluctuation analysis of multi-fractal was 
obtained in five steps. 

 Step 1: we need to have a series of data (here is the 
Earth's surface anomaly temperature), in which the 
values vary through the time 𝑇(𝑖), in the length of 𝑁 (𝑖 
counts the number of the months) and its profile was 
calculated as follows [23, 24]: 

𝑌(𝑗) = 

෍[𝑇(𝑖) − ⟨𝑇⟩] = ෍ 𝑇ప
෩, 𝑗 = 0,1,2, . . . , 𝑁

௝

௜ୀଵ

௝

௜ୀଵ

.                (1) 

 Step 2: Divide the profile length 𝑌(𝑖) into 𝑁௦ =

𝑖𝑛𝑡 ቀ
ே

௦
ቁ non-overlapping segments of the same range as 

𝑠. Since the length of the series is not a multiple of the 
considered time scales 𝑠, the same method is repeated 
from the end of the series, which means the number of 
the segment is 2𝑁௦ [24]. 

 Step 3: Using the least-squares fit on the data profile to 
compute a local trend for each 2𝑁௦ segment. Then, 
calculate the variance for each segment by Eq. (2) and 
Eq. (3) [24]; 
 

𝐹ଶ(𝑠, 𝜈) =
1

𝑠
෍{𝑌[(𝜈 − 1)𝑠 + 𝑖] − 𝑦ఔ(𝑖)}ଶ

௦

௜ୀଵ

, 𝜈

= 1, . . . , 𝑁௦ ,                                           (2) 

𝐹ଶ(𝑠, 𝜈) =
1

𝑠
෍{𝑌[𝑁 − (𝜈 − 𝑁௦)𝑠 + 𝑖] − 𝑦ఔ(𝑖)}ଶ

௦

௜ୀଵ

, 𝜈

= 𝑁௦ + 1, . . . ,2𝑁௦.                               (3) 
Linear, quadratic, cubic, and higher order polynomials 
can be utilized in the fitting method, which the 
corresponding methods are thus called MFDFA1, 
MFDFA2, MFDFAm (m is the mth order of the trends 
of the profile and is equivalent to the (𝑚 − 1)th order 
of the main data) and must be eliminated. Thus, a 
comparison of the results for different orders of DFA 
allows us to estimate the type of the polynomial trend in 
the time series [24, 25, 26]. 

 Step 4: Average throughout the segments to get the 𝑞th 
order of the fluctuations function: 

  

𝐹௤(𝑠) = ቐ
1

2𝑁௦
෍[𝐹஽ி஺௠

ଶ (𝜈, 𝑠)]
௤
ଶ

ଶேೞ

ఔୀଵ

ቑ

ଵ
௤

.                          (4) 

 The DFA method is retrieved for 𝑞 = 2. 𝐹௤(𝑠) depends 

on a timescale (𝑠) for different values of 𝑞. Thereupon, 
steps 2, 3, and 4 must be repeated for some different 𝑠 
to observe that by increasing 𝑠 the values of 𝐹௤(𝑠) also 

increase. Additionally, 𝐹௤(𝑠) relies on the m-order of 

DFA. Hence, 𝐹௤(𝑠) is only defined for 𝑠 ≥ 𝑚 + 2 

[24,26]. 

 Step 5: Determine the scaling behavior of the 
fluctuation function by analyzing the log-log plot of 
𝐹௤(𝑠) vs 𝑠 for different values of 𝑞. If the time series 

𝑇(𝑖) are long-term power-law correlated, 𝐹௤(𝑠) 

increases as a power-law for each value of 𝑠 [24]: 
 

 𝐹௤(𝑠) ∼ 𝑠ℎ(௤) .                                                           (1) 

 The value of ℎ(𝑞) for when 𝑞 → 0 can not be 
determined directly using the average method in Eq. (4) 
because of the diverging exponent. Instead, a 
logarithmic averaging procedure has to be employed; 

𝐹଴(𝑠) = 𝑒𝑥𝑝
1

4𝑁௦
෍ 𝑙𝑛[ 𝐹ଶ(𝜈, 𝑠)] ∼ 𝑠ℎ(଴)

ଶேೞ

ఔୀଵ

.               (6) 

 For large scales 𝑠 >
ே

ସ
, 𝐹௤(𝑠) becomes unreliable 

because the number of segments 𝑁௦ in step 4 becomes 

very small. Thus, scales 𝑠 >
ே

ସ
 should be excluded from 

the fitting procedure determining ℎ(𝑞). ℎ(𝑞) is the 

generalized Hurst exponent, which for monofractal time 

series is independent of 𝑞, whereas, for multifractal time 

series, ℎ(𝑞) varies with 𝑞. For 𝑞 = 2, the generalized 

Hurst exponent is exactly equal to the Hurst exponent 

that provides information about the average fluctuation 

of the series [25, 26]. For the monofractal series, the 

𝐻 = ℎ(𝑞 = 2), and for the multifractal series, the Hurst 

exponent obtains 𝐻 = ℎ(𝑞 = 2) − 1 [24, 26]. 

Depending on ℎ(𝑞 = 2), the series categorized into; (i) 

0 < ℎ(𝑞 = 2) < 0.5 which is for an anti-persistent 

long-range correlated (negative long-term memory), (ii) 
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ℎ(𝑞 = 2) = 0.5 is for uncorrelated distribution, and 

(iii) 0.5 < ℎ(𝑞 = 2) < 1 is for a persistent long-range 

correlated (positive long term memory) [24]. For 𝑞 > 0, 

the ℎ(𝑞) describes the scaling behavior of the segments 

with large fluctuations. In contrast, for 𝑞 < 0, the ℎ(𝑞) 

describes the scaling behavior of the segments with 

small fluctuations [24].  

The classical multifractal scaling exponent 𝜏(𝑞) (it is 
also known as Renyi scaling exponent) is defined by the 
standard partition function-based formalism, which is 
related to the generalized Hurst exponent as [26]; 

ℎ(𝑞) =
1 + 𝜏(𝑞)

𝑞
,                                                             (7) 

When 𝜏(𝑞) depends linearly on 𝑞 it demonstrates the 

mono-fractality, otherwise, it is multifractality [24]. 

 Singularity spectra 𝑓(𝛼) is another way to characterize 
the multifractality of the series and is related to 𝜏(𝑞) 
with the Legendre transform [24, 26]. 𝛼 is Holder 
exponent, that displays the singularity strength, and is 
obtained by using Eq. (7) [24]; 

 𝜏(𝑞) = 𝑞ℎ(𝑞) − 1,                                                    (2) 

  𝑓(𝛼) = 𝑞𝛼 − 𝜏(𝑞),                                                  (3) 

  𝑓(𝛼) = 𝑞[𝛼 − ℎ(𝑞)] + 1,                                      (4) 

  and 

    𝛼 = ℎ(𝑞) + 𝑞ℎ'(𝑞).                                              (5) 

 If the 𝛼 results in a single value, it denotes monofractal 
behavior, and if it results in different values (which 
leads to a spectrum) for different parts of a structure it 
denotes multifractality [26]. The range of the Holder 
exponent is calculated in the following ways; 

𝛼௠௜௡ = lim
௤→ିஶ

൬
𝜕𝜏(𝑞)

𝜕𝑞
൰,                                                  (12) 

𝛼௠௜௡ = lim
௤→ିஶ

ቀ
డఛ(௤)

డ௤
ቁ.                                                     (13)      

3 Results and discussion 

 At first, we examined the data to observe its initial 
conditions, so we plotted the Earth's surface average 
temperature anomaly data vs the monthly time scale, 
which was collected from January 1880 to December 
2023. Figure 1a shows a considerably increasing trend 
in recent decades. 
 We also calculated the annual maximum and minimum 
temperature, the average temperature, and the 
difference between the maximum and minimum. As 
shown in Fig. 2, the red line is the minimum temperature 
of the years, and the green line is the maximum. The 
blue line is the average temperature during the years, 
which as we can see, is not the same value for all the 
timescales and it means our data are non-stationary. The 
black line is the subtraction of the maximum and 
minimum temperatures. The black line shows no 
consistent upward or downward trend over the entire 
period, just a variation around the mean value. 

 

(a) 
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(b) 

Figure 1. (a) The GISS Earth temperature anomalies data averaged 
in months from January 1880 to December 2023. (b) For 
differentiated data as 𝑇஽௘௧௥௘௡ௗ௘ௗ = 𝑇௜ − 𝑇௜ିଵ. 

 
Figure 2. The trend of the annual minimum and maximum 
temperature. 

 

 What we looked for was the information that the 
temperature fluctuation shows. In this order, the 
uprising trend of the data should be eliminated to probe 
the fluctuations. To make the data stationary, the values 
of the trend function in each interval time were 
calculated and the values of time series data were 
subtracted from the corresponding data in the trend line 
equation. This difference is considered a new value for 
the time series. With this method, the average data and 

their variance are fixed and the trend of the data is also 
removed, Fig. 1b. 

3.1 Fractal behavior 

 As mentioned in section 2, we had to do 5 steps on the 
detrended data to plot the log-log of the fluctuation 
function vs the scale 𝑠 for different orders of 𝑞, which 
is shown in Fig. 3. There are no crossover timescales on 
the graph, which means the data are stationary and there 
is no competition between the noise and trend [24, 25, 
26]. As it is mentioned in the essay, the increased linear 
trend was removed, but it is not recognizable whether 
there are any trends in the data. Plotting the fluctuation 
function and observing no crossover would assure us 
that there is no trend in the data and the data is now 
stationary. If there were crossovers that caused changes 
in the fluctuation function’s behavior, then there was a 
sinusoidal trend in the data and there must be methods 
to cancel this trend [References 24, 25, and 26]. For 
each 𝑞 a line could be fitted easily and the slopes are 
different with respect to 𝑞, which means multifractal 
behavior in the data. According to Section 2.1 The slope 
of the fitted line for 𝑞 = 2 in Fig. 3 depicts the Hurst 
exponent [25, 26]. 

 

Figure 3. Logarithmic diagram of the fluctuation 𝐹௤(𝑠) with respect 

to s for different values of q moments. 

 The generalized Hurst exponent, ℎ(𝑞), was calculated 
(according to Eq. 4), and its graph is plotted in Fig. 4. 
According to section 2.1. and the fact that the process 
under examinations is non-stationary, the Hurst 
exponent is as follows 
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𝐻 = ℎ(𝑞) − 1 = 0.83 ± 0.02.                            (14)         

 As the description of Hurst exponent in section 2, the 
Earth's surface temperature has a positive long-term 
correlation. A long-term correlation means two 
variables move in tandem in the same direction. When 
one variable tends to increase as the other variable 
increases or one variable tends to decrease while the 
other decreases. Meanwhile, as time passes, the 
temperatures tend to increase, which means today's 
temperature has a definite effect on future temperatures. 
As we know, 𝑞 < 0 indicates small fluctuations, and 
𝑞 > 0 demonstrates large fluctuations [24, 26]. As it is 
apparent in Fig. 4, while the values of 𝑞 increase, the 
ℎ(𝑞) decreases. It means that there is a strong 
dependency (an inverse relation) among ℎ(𝑞) and 𝑞 for 
monthly, minimum, and maximum annual 
temperatures, it could be estimated by the multi-fractal 
behavior [24, 25, 26]. 
It is noticeable that as the main fractal pattern admits, 
the behavior of the generalized Hurst’s exponent is 
independent of q for any monofractal process. This is 
because of the identical behavior of variances 

𝐹஽ி஺௠
ଶ (𝜈, 𝑠) for all the segments. 

 
Figure 4. Generalized Hurst exponent diagram for monthly data and 
annual maximum and minimum data 

 

   To genuinely test the multi-fractal behavior, we also 
examined the scalability exponent and singularity 
spectrum (Holder spectrum). The generalized Hurst 
exponent, introduced by the MF-DFA method, is related 
to the multi-fractal scalability exponent as Eq. (8)[24]. 

   In Fig. 5 (plotted for monthly, minimum, and 
maximum annual), the graph has a different slope for 
positive and negative 𝑞, which indicates that the 
temperature data pursues the multi-fractal behavior. 
Moreover, the singularity spectra figure for monthly, 
minimum, and maximum annual was plotted. In Fig. 6, 
the singularity spectrum has a wider length for 
maximum annual temperature than monthly and 
minimum annual temperature, which displays that the 
multi-affinity strength is greater for yearly max 
temperature time series [24, 26]. 

 

 

Figure 5. Multi-fractal scalability exponent diagram for the main 
data and annual maximum and minimum data. 
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Figure 6. The singularity spectrum of monthly average temperature 
data, annual maximum average temperature, and annual minimum 
average temperature. 

3.2 The origin of multi-fractal behavior 

   Due to the strong dependence of the generalized 
Hurst exponent on 𝑞, the difference in the slope of the 
𝜏(𝑞) versus 𝑞, and the spectrum of the 𝑓(𝛼) versus 𝛼 
(not a single value), it is deduced that the temperature 
data has a multifractal behavior. Then, the cause of 
multifractality had to be recognized. There are two 
types of multifractality in time series, which both 
require a multitude of scaling exponents for small and 
large fluctuations, one can be due to a broad probability 
density function of the data, and the other can be due to 
different long-correlations for all the range of 
fluctuations [24]. 

   To find the origin of different long-correlations for 
small and large fluctuations, the shuffled data is 
utilized. If the shuffled data makes the multifractality 
disappear, the generalized Hurst exponent becomes 
independent of 𝑞. Shuffling data does not change the 
distribution function of the data, but by putting values 
in random orders their correlations change [23, 24]. The 
other reason for the multifractality is when the 
probability density distribution function (PDF) deviates 
from the Gaussian function. In this case, the data had to 
be surrogated, which makes the distribution function of 
the Earth's surface anomaly temperature data converted 
to Gaussian, the multifractal behavior disappeared, and 
the generalized Hurst exponent does not rely on 𝑞. The 
correlation does not change, but the distribution 
function changed to the Gaussian distribution [23, 24]. 
In this case, some steps have to be taken [24, 26]: 

I: Transfer the data by Fourier transforming to Fourier 

space: 

𝑇(𝜈) = 𝐹{𝑇(𝑡)} = ∑ 𝑇(𝑡௡)𝑒ଶగ௜ఔ௧೙ேିଵ
௡ୀ଴ .          (15)               

II: Multiply the coefficients of this transform by 𝑒௜థ(ఔ) 

(𝜙(𝜈) with a uniform distribution in the range 

[0.  2𝜋]). 

𝑇෨(𝜈) = 𝑇(𝜈)𝑒௜Φ(ఔ).                                               (16)                             

III: Gaussian data will be obtained by inverse Fourier 

transform: 

 𝑇෨(𝑡௡) = 𝐹ିଵ{𝑇෨(𝜈)}.                                            (17)           

The range of the surrogate data is the same as the 
original data. 

 

 
Figure 7. Generalized Hurst exponent diagram for the original 
data, surrogated data, and shuffled data. 

 

 Using the two mentioned methods, we investigate 
which one is the cause of the multi-fractal behavior. 
Either of these methods exhibits the generalized Hurst 
exponent becoming independent of 𝑞 as the reason for 
fractality. If both cause the multi-fractal behavior, then 
the generalized Hurst exponent for both shuffled and 
surrogated data depends on 𝑞 weaker than the original 
series [24]. Figure 7 shows the generalized Hurst 
exponent versus 𝑞 values for the main, shuffled, and 
surrogated series. As it is apparent, for all three datasets, 
the generalized Hurst exponent depends on 𝑞, which 
means both the long correlation between the data and 
the deviation of the probability density distribution 
function are the reasons for the multi-fractal behavior in 
the investigated Earth's surface temperature time series, 
but the long-correlation has more effect on 
multifractality because its line is closer to the original 
data line. 

4 Conclusions 
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   In this study, we investigated the collected monthly 
average Earth's surface temperature anomaly dataset, 
which includes land surface and sea surface 
temperatures from NASA GISS. In a comparison of the 
variety of dataset collections, we selected GISTEMP 
because it has more complete coverage than others. To 
survey how the data fluctuate throughout time and what 
information the data possesses, we used the multifractal 
analysis because it is a convenient method for 
nonstationary time series. The results demonstrated that 
the data had an increasing trend which means the Earth's 
temperature is rising. To investigate the fractal behavior 
of the data, we removed the uprising trend of the data, 
where a power law behavior indicating the fractal 
feature was observed in the fluctuation function of the 
temperature set. The value of Hurst exponent was 
calculated as 𝐻 = 0.83 ± 0.02 which means the 
fluctuations are not random and a positive correlation 
exists among them where this correlation can increase 
the future temperature. Besides, more calculations 
exhibited multifractal feature in the temperature dataset, 
which indicated that the correlations are not the same in 
the small and large scales and the strength of multi- 
affinity was determined. 
 To find what causes the multi-affinity in Earth's surface 
temperature time series, two methods were tested, the 
first was to make the correlation of the data go away by 
shuffling data, and the second was to transform the 
distribution function of the data to the Gaussian 
function by surrogating data, and finally plot the 
generalized Hurst exponent for both of them and 
compare them with the generalized Hurst exponent for 
original data. In conclusion, both approaches show 
multi-affinity which indicate that both different 
correlations and distribution function deviation from the 
Gaussian one are the source of multi-affinity feature in 
the GISS temperature data-sets. 
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