تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,493,190 |
تعداد دریافت فایل اصل مقاله | 8,884,823 |
مقالۀ پژوهشی: طراحی و ساخت تشدیدگر V- شکل در دستگاه بینابنمایی جذبی لیزری OFCEAS | ||
فیزیک کاربردی ایران | ||
دوره 14، شماره 2 - شماره پیاپی 37، تیر 1403، صفحه 75-98 اصل مقاله (2.96 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2023.44727.1346 | ||
نویسندگان | ||
وحیده فقیهی* 1؛ محمد رضا رشیدیان وزیری2؛ حسین رزاقی3 | ||
1استادیار، پژوهشکدۀ فوتونیک و فناوریهای کوانتومی، پژوهشگاه علوم و فنون هستهای، تهران، ایران | ||
2دانشیار، پژوهشکدۀ فوتونیک و فناوریهای کوانتومی، پژوهشگاه علوم و فنون هستهای، تهران، ایران.دانشیار، گروه فیزیک، دانشکده علوم، دانشگاه فردوسی مشهد، ایران | ||
3پژوهشگر، پژوهشکده فوتونیک و فناوریهای کوانتومی، پژوهشگاه علوم و فنون هسته ای، تهران، ایران | ||
چکیده | ||
در این پژوهش تشدیدگر V- شکل به عنوان محفظه جذبی در دستگاه بینابنمایی لیزری جهت اندازهگیری ایزوتوپهای پایدار آب O) 18O,17 H, 2) طراحی و ساخته شده است. در طراحی یک تشدیدگر، طول تشدیدگر و شعاع انحنای آینههای بکار گرفته شده دربردارنده پایداری نوری سیستم هستند. آینههای تشدیدگر با در نظر گرفتن شرط پایداری و بر اساس ساختار موردنظر مد خروجی تشدیدگر طراحی شدهاند. بر اساس شرایط بالا تشدیدگر V- شکل طراحی شده دارای دو بازو با قطرهای داخلی 5 میلیمتر و با طول معادل 40 سانتیمتر است که با یکدیگر زاویه °7/1 میسازند. این تشدیدگر دارای حجم داخلی 20 سانتیمتر مکعب است که امکان پاسخگویی سریع بینابنگار لیزری را فراهم میکند. بازتابندگی بالای آینهها منجر به طول جذب اپتیکی مؤثر 13 کیلومتر و ظرافت اپتیکی تشدیدگر 000,52 میشود که مقادیر این کمیتها امکان اندازهگیری در غلظتهای خیلی پایین ایزوتوپها و جداسازی طیف جذبی آنها را برای اندازهگیریهای دقیق ایزوتوپی فراهم میکنند. آینههای تشدیدگر با استفاده از نرمافزار مکلود و به منظور داشتن بیشینه بازتابندگی در طولموج موردنظر طراحی شدهاند. تشدیدگر نوری V- شکل طراحی شده برای اندازهگیری ایزوتوپهای پایدار عناصر مختلف کاربرد دارد. البته، آینههای تشدیدگر باید بازتابندگی بالا در طولموج جذبی عنصر مورد مطالعه داشته باشند. با دستیابی به دانش تشدیدگر V- شکل برای مطالعه ایزوتوپهای پایدار عناصر مختلف امکان توسعه پژوهشهای کاربردی در زمینه بهکارگیری ایزوتوپهای پایدار فراهم خواهد شد. | ||
کلیدواژهها | ||
تشدیدگر V- شکل؛ بینابنمایی لیزری؛ ایزوتوپهای پایدار؛ فناوری OF-CEAS | ||
عنوان مقاله [English] | ||
Research Paper: Design and Fabrication of V-Shaped Resonator for Using in Laser Spectroscopy Based on Optical Feedback Cavity Enhanced Absorption Spectroscopy | ||
نویسندگان [English] | ||
Vahideh Faghihi1؛ Mohammad Reza Rashidian Vaziri2؛ Hossein Razzaghi3 | ||
1Assistant Professor, Photonics and Quantum Technology Research School, Nuclear Science and Technology Research Institute, Tehran-Iran | ||
2Associate Professor, Photonics and Quantum Technology Research School, Nuclear Science and Technology Research Institute, Tehran-Iran. Associate Professor, Department of Physics, Faculty of Sciences, Ferdowsi University Mashhad, Iran. | ||
3Researcher, Photonics and Quantum Technology Research School, Nuclear Science and Technology Research Institute, Tehran, Iran | ||
چکیده [English] | ||
In this study, we present the design and fabrication of a V-shaped resonator that served as an absorption chamber in a laser spectroscopy system for water stable isotope measurement (2H, 17O, 18O) based on optical feedback cavity-enhanced absorption spectroscopy. In the design of a resonator, its length and the radius of curvature of the mirrors guarantee the optical stability of the system. The resonator mirrors are designed considering the condition of stability and based on the desired mode structure of the resonator output. The V-shaped resonator is designed with two arms of 40 cm and inner diameters of 5 mm making an angle of 1.7°. This resonator has an internal volume of 20 cm3 which provides fast response of laser spectrometer. The high reflectivity of mirrors leads to an effective absorption optical path length of 13 km and a high finesse optical resonator of Ƒ~52،000. These values allow low concentration water vapor isotope analyses and resolution of the absorption spectrum of isotopes for accurate isotope measurements, respectively. Resonator mirrors are designed using Mcleod software to have maximum reflectance at a wavelength of 1.4 micrometers. By making a V-shaped optical resonator for measuring stable isotopes of water and subsequent development for measuring stable isotopes of other elements, the possibility of developing the application of stable isotopes in different areas of research will be provided. | ||
کلیدواژهها [English] | ||
V-Shaped Resonator, Laser Spectroscopy, Stable Isotopes, OF-CEAS Technology | ||
مراجع | ||
[1] Rennick, C., Arnold, T. & Chung, E., "Continuous Measurement of Methane δ13 C-CH 4 and δD-CH 4 Stable Isotope Ratios for Regional Source Identification", In AGU Fall Meeting Abstracts, vol. 2019, pp. B13O-2508. 2019. [2] Busuyi, O. A., Liu, B. & Ostadhassan, M., "Stable Isotope Geochemistry of the Organic Elements within Shales and Crude Oils: A Comprehensive Review", Molecules 27(1), 34, 2021. https://doi.org/10.3390/molecules27010034 [3] Nyamgerel, Y., Han, Y., Kim, M., Koh, D., & Lee, J., “Review on applications of 17O in hydrological cycle”, Molecules, 26(15), 4468, 2021. doi: 10.3390/molecules26154468. [4] Baldoni, M., Nardi, A., De Angelis, F., Rickards, O., & Martínez-Labarga, C., “How does diet influence our lives? Evaluating the relationship between isotopic signatures and mortality patterns in Italian Roman imperial and medieval periods”, Molecules, 26(13), 3895, 2021. DOI: 10.3390/molecules26133895. [5] Skippington, J., Manne, T., & Veth, P., “Isotopic indications of late Pleistocene and Holocene paleoenvironmental changes at Boodie Cave archaeological site, Barrow Island, Western Australia”, Molecules, 26(9), 2582, 2021. https://doi.org/10.3390/molecules26092582 [6] Connolly, R., Jambrina-Enríquez, M., Herrera-Herrera, A. V., & Mallol, C., “Investigating hydrogen isotope variation during heating of n-Alkanes under limited oxygen conditions: implications for palaeoclimate reconstruction in archaeological settings”, Molecules, 26(7), 1830, 2021. DOI: 10.3390/molecules26071830 [7] Chang, Y. C., Chiang, W. C., Madigan, D. J., Tsai, F. Y., Chiang, C. L., Hsu, H. H., ... & Wang, S. P., “Trophic dynamics and feeding ecology of skipjack tuna (Katsuwonus pelamis) off Eastern and Western Taiwan”, Molecules, 27(3), 1073, 2022. https://doi.org/10.3390/molecules27031073 [8] Bianchini, G., Brombin, V., Carlino, P., Mistri, E., Natali, C., & Salani, G. M., “Traceability and authentication of manila clams from North-Western adriatic lagoons using C and N stable isotope analysis”, Molecules, 26(7), 1859, 2021. https://doi.org/10.3390/molecules26071859 [9] Warr, O., Young, E. D., Giunta, T., Kohl, I. E., Ash, J. L., & Lollar, B. S., “High-resolution, long-term isotopic and isotopologue variation identifies the sources and sinks of methane in a deep subsurface carbon cycle”, Geochimica et Cosmochimica Acta, 294, 315-334, 2021. https://doi.org/10.1016/j.gca.2020.12.002 [10] Lan, X., Nisbet, E. G., Dlugokencky, E. J., & Michel, S. E., “What do we know about the global methane budget? Results from four decades of atmospheric CH4 observations and the way forward”, Philosophical Transactions of the Royal Society A, 379(2210), 20200440, 2021. https://doi.org/10.1098/rsta.2020.0440 [11] Peng, S., “Challenges and opportunities in the global methane cycle”, Iscience, 26(6), 2023. DOI: 10.1016/j.isci.2023.106878 [12] Jacques, C., Sapart, C. J., Fripiat, F., Carnat, G., Zhou, J., Delille, B., ... & Tison, J. L., “Sources and sinks of methane in sea ice: Insights from stable isotopes”, Elem Sci Anth, 9(1), 00167, 2021. https://doi.org/10.1525/elementa.2020.00167 [13] Zhao, S., Zhao, Y., Rogers, K. M., Chen, G., Chen, A., & Yang, S., “Application of multi-element (C, N, H, O) stable isotope ratio analysis for the traceability of milk samples from China”, Food chemistry, 310, 125826, 2020. DOI: 10.1016/j.foodchem.2019.125826 [14] Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., & Song, X., “Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water”, Proceedings of the National Academy of Sciences, 117(52), 33345-33350, 2020. https://doi.org/10.1073/pnas.2014422117 [15] Zhao, S., Zhao, Y., Rogers, K. M., Chen, G., Chen, A., & Yang, S., “Application of multi-element (C, N, H, O) stable isotope ratio analysis for the traceability of milk samples from China”, Food chemistry, 310, 125826, 2020. DOI: 10.1016/j.foodchem.2019.125826 [16] Reynard, L. M., Wong, W. W., & Tuross, N., “Accuracy and Practical Considerations for Doubly Labeled Water Analysis in Nutrition Studies Using a Laser-Based Isotope Instrument (Off-Axis Integrated Cavity Output Spectroscopy)”, The Journal of Nutrition, 152(1), 78-85, 2022. DOI: 10.1093/jn/nxab324 [15] Srivastava, A., Long, S. E., Norris, J. E., Bryan, C. E., Carney, J., & Hodges, J. T., “Comparison of primary laser spectroscopy and mass spectrometry methods for measuring mass concentration of gaseous elemental mercury”, Analytical chemistry, 93(2), 1050-1058, 2020. DOI: 10.1021/acs.analchem.0c04002. [16] Reynard, L. M., Wong, W. W., & Tuross, N., “Accuracy and Practical Considerations for Doubly Labeled Water Analysis in Nutrition Studies Using a Laser-Based Isotope Instrument (Off-Axis Integrated Cavity Output Spectroscopy)”, The Journal of Nutrition, 152(1), 78-85, 2022. DOI: 10.1093/jn/nxab324 [17] Melanson, E. L., Swibas, T., Kohrt, W. M., Catenacci, V. A., Creasy, S. A., Plasqui, G., ... & Berman, E. S., “Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry”, American Journal of Physiology-Endocrinology and Metabolism, 314(2), E124-E130, 2018. DOI: 10.1152/ajpendo.00241.2017 [18] Kyser, T. K., Leybourne, M. I., & Layton-Matthews, D., “Advances in the use of isotopes in geochemical exploration: Instrumentation and applications in understanding geochemical processes”, Geochemistry: Exploration, Environment, Analysis, 20(2), 199-204, 2020. https://doi.org/10.1144/geochem2019-045 [19] Volkmann, T., Kühnhammer, K., Herbstritt, B., Gessler, A., & Weile, M., “A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy”, Plant, Cell & Environment, 39(9), 2055–2063, 2016. https://doi.org/10.1111/pce.12725. [20] Wassenaar, L. I., Terzer‐Wassmuth, S., Douence, C., Araguas‐Araguas, L., Aggarwal, P. K., & Coplen, T. B., “Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope‐ratio and laser‐absorption spectrometry”, Rapid Communications in Mass Spectrometry, 32(5), 393-406, 2018. https://doi.org/10.1002/rcm.8052 [21] Morville, J., Romanini, D., Kachanov, A. A., & Chenevier, M., “Two schemes for trace detection using cavity ringdown spectroscopy”, Applied Physics B, 78, 465-476, 2004. https://doi.org/10.1007/s00340-003-1363-8 [22] Luo, Z., Tan, Z., & Long, X., “Application of near-infrared optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) to the detection of ammonia in exhaled human breath”, Sensors, 19(17), 3686, 2019. DOI: 10.3390/s19173686 [23] Yang, J., Zeng, F., Li, X., Ran, C., Xu, Y., & Li, Y., “Highly specific detection of Aβ oligomers in early Alzheimer's disease by a near-infrared fluorescent probe with a “V-shaped” spatial conformation”, Chemical Communications, 56(4), 583-586, 2020. https://doi.org/10.1039/C9CC08894F [24] Gianella, M., & Ritchie, G. A., “Cavity-enhanced near-infrared laser absorption spectrometer for the measurement of acetonitrile in breath”, Analytical chemistry, 87(13), 6881-6889, 2015. https://doi.org/10.1021/acs.analchem.5b01341 [25] He, Q., Zheng, C., Ye, W., & Tittel, F. K., “Multiple Gases Detection Based on Periodical Mode-Locked Cavity-Enhanced Absorption Spectroscopy Using a Single-Mode Diode Laser”, IEEE Sensors Journal, 23(6), 5720-5725, 2023. DOI: 10.1109/JSEN.2023.3241275 [26] Liu, X., Gao, G., Yu, X., Gao, Z., & Cai, T., “Development of an off-axis cavity-enhanced absorption spectroscopy system with open-path configuration for gas sensing”, Infrared Physics & Technology, 114, 103654, 2021. DOI: 10.1016/j.infrared.2021.103654 [27] Bayrakli, I., & Akman, H., “Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy”, Journal of biomedical optics, 20(3), 037001-037001, 2015. DOI: 10.1117/1.JBO.20.3.037001 [28] Wang, Y., Guan, S., Tan, Z., Cao, H., Chen, S., & Yang, Z., “Detection of CO based on optical feedback cavity enhanced absorption spectroscopy”, In International Conference on Precision Instruments and Optical Engineering (PIOE 2022) (Vol. 12585, pp. 78-83). SPIE, 2023, February. DOI:10.1117/12.2667773 [29] Morville, J., Romanini, D., & Kerstel, E., “Cavity enhanced absorption spectroscopy with optical feedback”, In Cavity-Enhanced Spectroscopy and Sensing (pp. 163-209). Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. https://doi.org/10.1007/978-3-642-40003-25. [30] Hu, J., Wan, F., Wang, P., Ge, H., & Chen, W., “Application of frequency-locking cavity-enhanced spectroscopy for highly sensitive gas sensing: a review”, Applied Spectroscopy Reviews, 57(5), 378-410, 2022. https://doi.org/10.1080/05704928.2021.1894438 [31] Mazurenka, M., Orr-Ewing, A. J., Peverall, R., & Ritchie, G. A., “Cavity ring-down and cavity enhanced spectroscopy using diode lasers”, Annual Reports Section" C"(Physical Chemistry), 101, 100-142, 2005. https://doi.org/10.1039/B408909J [32] Romanini, D., Ventrillard, I., Méjean, G., Morville, J., Kerstel, E., Gagliardi, G., & Loock, H. P., “Cavity-enhanced spectroscopy and sensing”, Springer Berlin Heidelberg, Berlin, Heidelberg, 1-60, 2014. [33] Johnston, P. S., & Lehmann, K. K., “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source”, Optics express, 16(19), 15013-15023, 2008. 10.1364/oe.16.015013. PMID: 18795038 [34] Landsberg J., Development of an OF-CEAS laser spectrometer for water vapor isotope measurements at low water concentration, PhD Thesis, Laboratoire interdisciplinaire de Physique J. Fourier University (Grenoble I), 2014. [35] https://hitran.org/ [36] Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E. V., Skinner, F. M., ... & Yurchenko, S. N., “The HITRAN2020 molecular spectroscopic database”, Journal of quantitative spectroscopy and radiative transfer, 277, 107949, 2022. https://doi.org/10.1016/j.jqsrt.2021.107949 [37] Rothman, L. S., “History of the HITRAN Database”, Nature Reviews Physics, 3(5), 302-304, 2021. https://doi.org/10.1038/s42254-021-00309-2 [38] Yang, H., “Tunable diode-laser absorption-based sensors for the detection of water vapor concentration, film thickness and temperature”, Doctoral dissertation, Duisburg, Essen, Universität Duisburg-Essen, Diss., 2012. [39] Kerstel, E. T., Gagliardi, G., Gianfrani, L., Meijer, H. A. J., Van Trigt, R., & Ramaker, R., “Determination of the 2H/1H, 17O/16O, and 18O/16O isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 μm”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(11), 2389-2396, 2002. DOI: 10.1016/s1386-1425(02)00053-7 [40] Kerstel, E., & Gianfrani, L., “Advances in laser-based isotope ratio measurements: selected applications”, Applied Physics B, 92, 439-449, 2008. https://doi.org/10.1007/s00340-008-3128-x [41] Katsidis, C. C., & Siapkas, D. I., “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference”, Applied optics, 41(19), 3978-3987, 2002. https://doi.org/10.1364/AO.41.003978. | ||
آمار تعداد مشاهده مقاله: 480 تعداد دریافت فایل اصل مقاله: 429 |