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We study the effect of acceleration of the observer on the quantum Fisher information and 
entanglement using hybrid state. The two-partite entangled hybrid state is consisted of 
discrete (vacuum and single photon) and continues (coherent) variable states. When one of 
the observers (e.g., Rob) is uniformly accelerated with respect to the other partner, Alice, 
we find that quantum Fisher information has a more stable structure than entanglement. 
Results show that quantum Fisher information decreases with the increase of the acceleration 
but remains finite in the limit of infinite acceleration that is in contrast with entanglement. 
Moreover, the effect of acceleration is investigated on the value of two-mode squeezing. 

1 Introduction 

 Quantum information science is based on the discovery of 
the characteristics of the quantum system which enables 
tasks that cannot be accomplished in a classical world. 
Entanglement plays a central role in quantum information 
theory and is considered as a resource for quantum 
communication and teleportation [1]. Attention to the 
theory of relativistic quantum information has increased 
over the past decade. Understanding entanglement in 
relativistic settings has been a key question in relativistic 
quantum information. At the beginning of this theory, 
entanglement was considered in an inertial frame [2, 3]. 
Moreover, many articles investigated the invariance of 
entanglement under the Unruh effect when observers are in 
uniform acceleration [4, 5, 6].  

 There are many programs in which satellites are used to 
distribute entanglement in quantum processes such as 
cryptography and teleportation [7]. Relative effects are 

important in places where satellites work [8, 9]. Therefore, a 
full understanding of the effects of relativity on quantum 
properties allows us to correct and improve the methods of 
quantum information theory by considering these effects.  

 Recently, quantum Fisher information (QFI) [10] has 
attracted considerable attention, due to its own significance 
in quantum estimation and quantum information theory 
[11]. QFI is an indicator of the evolution speed of the 
quantum state and the inverse of this measure determines 
the achievable precision in parameter estimation. According 
to this ability, QFI plays a significant role in the field of 
quantum metrology [12] and multi-partite entanglement 
detection [13, 14]. QFI can quantify the teleportation of 
specific parameters encoded in quantum states accurately 
[15]. In this regard, the evolution of the teleportation of 
quantum resources and QFI under the Unruh effect has 
been studied in [16, 17, 18].  

 Moreover, squeezed states of light have significant 
applications in several branches of quantum information 
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processing [19, 20, 21]. The state is known as a squeezed 
state if its quantum fluctuation in one of the field 
quadratures becomes less than that of the vacuum state or 
canonical coherent state [22, 23]. One of the most important 
applications of the squeezed state is in the field of 
interferometric techniques to detect very weak forces such as 
gravitational waves [24]. In this context, it is shown that 
frequency-dependent squeezing can improve the force 
sensitivity of the optomechanical interferometer [25]. 
Furthermore, the enhancement of spectroscopy of the 
rubidium atomic ensemble has been proved by using the 
polarization squeezed state [26]. On the other hand, it is 
shown that the squeezed single-photon state can be used as 
a resource for the teleportation of coherent state qubits 
[27].  

 To improve quantum technologies, different states have 
been used. There are several studies that have investigated 
the properties of discrete variable entangled states such as 
Bell states [2, 4, 5, 6]. 

 Moreover, there are few studies on the entanglement 
properties of continuous variable entangled systems. The 
theory of continuous-variable entanglement with special 
emphasis on foundational aspects, conceptual structures, 
and mathematical methods has been considered in some 
works [28, 29].   

 Furthermore, in some practical implementations, the two 
subsystems can differ in their nature, for example, an 
electromagnetic field and a matter system, or in the way 
they are most conveniently described, for example, in a 
discrete- and continuous-variable framework [30]. 
Considering the practical importance of these systems, we 
refer to the hybrid entangled state which is a combination 
of discrete and continuous variable states. This 
mentioned state is useful for quantum swapping [31], and 
super-dense coding [32]. In this regard, it is shown that by 
applying the hybrid entanglement, perfect quantum 
teleportation is possible [33]. So, a quantitative 
understanding of entanglement, QFI, and squeezing of 
hybrid states in non-inertial frames are required for 
quantum information processing tasks using hybrid states.  

 The remainder of this paper is organized as follows. In 
section 2, we consider the parametrized hybrid entangled 
state. In section 3, we review the non-inertial frame and 
introduce the Rindler coordinate and the Unruh effect for 
scalar particles as experienced by the accelerated 

observer. In section 4 we discuss the effect of the Unruh 
noise on the QFI of the parameterized arbitrary hybrid 
state. To quantify the value of entanglement of the hybrid 
state, we find the concurrence of the hybrid state in the 
inertial and non-inertial frame in section 5. In section 6, 
we study the behavior of the squeezing of hybrid state. 
Finally, the summary and conclusions are given in section 
7.  

2 The suggested model 

 Here, we consider a free scalar field which is, from an 
inertial perspective, in a hybrid state. The hybrid state can 
be produced in the lab and exploited for any current 
realization of bipartite quantum information with 
continuous and discrete variables [34, 35]. It belongs to 
the class of states, which is possible to characterize the 
redistribution of correlations due to relativistic effects.  
So, we focus on the parameterized (and arbitrary) hybrid 
state as the combination of vacuum and single-photon 
states with the coherent state which can be described as 

|𝜓⟩௜௡ = cos 𝜃 |𝛼⟩஺|0⟩ோ

+ sin 𝜃 𝑒௜థ| − 𝛼⟩஺|1⟩ோ,                  (1) 

where 𝜃 and 𝜙 refer to the polar and azimuth angles on 
the Bloch sphere  such that 0 ≤ 𝜃 ≤ 𝜋/2 and 0 ≤ 𝜙 ≤

𝜋. On the other hand, the subscripts A and R indicate the 
modes associated with the observers Alice and Rob, 
respectively, and coherent states |𝛼⟩  and |−𝛼⟩ are 
defined as [36, 37, 38] 

|𝛼⟩ = 𝑒ି
|ఈ|మ

ଶ ෍
𝛼௟

√𝑙!

ஶ

௟ୀ଴

|𝑙⟩,  

อ−𝛼⟩ = 𝑒ି
|ఈ|మ

ଶ ෍
(−𝛼)௟

√𝑙!

ஶ

௟ୀ଴

อ 𝑙⟩. 
(2) 

Since the coherent states, |𝛼⟩  and |−𝛼⟩, are non-orthogonal, 
it is more convenient to consider the even and odd 
coherent states defined as 

|+⟩ = 𝒩ା(|𝛼⟩ + |−𝛼⟩) 

|−⟩ = 𝒩 (|𝛼⟩ − |−𝛼⟩), (3) 

where  𝒩± = [2(1 ± 𝑒ିଶ|ఈ|మ
)]ି

భ

మ . So, instead of working 

with |𝛼⟩  and |−𝛼⟩, we use the following relation 
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|±α⟩ =
1

2
ቈ
|+⟩

𝒩ା
±

|−⟩

𝒩
቉. 

(4) 

3 Non-inertial frames: the Unruh effect 

 Considering a free scalar field in 3 + 1 dimensions, the 
Klein-Gordon equation takes the following form 

(𝜕௧
ଶ − 𝜕௫

ଶ)𝜙 = 0, (5) 

in Minkowski coordinates (𝑡, 𝑥). The quantized scalar 
field, 𝜙, can be expressed 

as 

𝜙(𝑡, 𝑥) =
1

√2𝜋
න

𝑑𝑘

ඥ2|𝑘|
൫𝑒ି௜|௞|௧ା௜௞௫𝑎௞

+ 𝑒௜|௞|௧ି௜௞௫𝑎௞
ற൯,                              (6) 

where the creation and annihilation operators follow the 

appropriate commutation relations ൣ𝑎௞ , 𝑎௞
ற൧ = 𝛿௞௞ሖ  and 

describe particles moving with momentum k either in 
the positive x direction (𝑘 > 0) or in the negative x 
direction (𝑘 < 0).  The vacuum state in the laboratory 
frame (the Minkowski vacuum) is defined as        
𝑎௞|0⟩ = 0. 

 Now, we consider an inertial observer, named Alice, 
who has a detector sensitive to modes 𝐴, and another 
observer, Rob, who moves with uniform acceleration, 
𝑎, and has a detector sensitive to modes 𝐵. For studying 
the entanglement from the point of view of an 
accelerated observer we need to find field quantization 
in non-inertial frames. 

 The appropriate coordinates for accelerated observers 
are (𝜏, 𝜉) known as Rindler coordinates. Two different 
sets of Rindler coordinates are necessary for covering 
the Minkowski space. These sets of coordinates define 
two Rindler regions that are causally disconnected from 
each other,  

𝑡(𝜏, 𝜉) = 𝑎ିଵ𝑒௔క sinh 𝑎𝜏 

𝑥(𝜏, 𝜉) = 𝑎ିଵ𝑒௔క cosh 𝑎𝜏, 

 

(7) 

In region I and  

𝑡(𝜏, 𝜉) = −𝑎ିଵ𝑒௔క sinh 𝑎𝜏  

𝑥(𝜏, 𝜉) = −𝑎ିଵ𝑒௔క cosh 𝑎𝜏, (8) 

in region II, where a denotes Rob’s proper acceleration. 
The set of Eqs. (7) and (8) both give rise to the same 
Rindler metric as 

𝑑𝑠ଶ = 𝑑𝑡ଶ − 𝑑𝑧ଶ − 𝑑𝑥ୄ
ଶ 

= 𝑒ଶ௔క(𝑑𝜏ଶ − 𝑑𝜉ଶ) − 𝑑𝑥ୄ
ଶ , 

 

(9) 

where 𝑥ୄ are the same in both Minkowski and Rindler 
space times. A particle undergoing uniform acceleration 
remains constrained to either of the Rindler regions I or II 
having no access to the opposite region, since these two 
regions are causally disconnected (see Fig. 1). 

 

Figure 1: Sketch of the world lines for the inertial observer Alice and 
the accelerated observer Rob. The set (𝑡, 𝑥) denotes Minkowski 
coordinates, while the set (𝜏, 𝜉) denotes Rindler coordinates. The 
causally disconnected Rindler regions 𝐼 and 𝐼𝐼 are evidenced. 

 The mode expansion in the accelerated frame is quite 
similar to Eq. (6) as 

𝜙(𝜏, 𝜉) =
1

√2𝜋
න

𝑑𝑘

ඥ2|𝑘|
൫𝑒ି௜|௞|ఛା௜௞క𝑏௞

+ 𝑒௜|௞|ఛି௜௞క𝑏௞
ற൯. 

 

(10) 

The vacuum state in the accelerated frame (the Rindler 
vacuum) is defined as 𝑏௞|0⟩ = 0. Although the 

operators 𝑎௞, 𝑎௞
ற   and  𝑏௞ , 𝑏௞

ற satisfy similar commutation 

relations, they are different. So, the Rindler vacuum and the 
Minkowski vacuum are two different quantum states of the 

field. The relation between 𝑎௞, 𝑎௞
ற  and  𝑏௞, 𝑏௞

ற is given by 

the Bogolyubov transformation as 𝑎 = cosh 𝑟 𝑏ூ −

sinh 𝑟 𝑏ூூ
ற  [39]. We find the Minkowski vacuum in terms of 

Rindler states as 
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|0௞⟩ =
1

cosh 𝑟
෍ tanh௡𝑟

௡

|𝑛௞⟩ூ|𝑛௞⟩ூூ , 
(11) 

where |𝑛௞⟩ூ and |𝑛௞⟩ூூ denote the mode decomposition 
in regions 𝐼 and 𝐼𝐼 respectively, and cosh 𝑟 =

(1 − 𝑒ିଶగஐ)ି
భ

మ with Ω =
|௞|௖

௔
 . In this regard, one 

particle state can be obtained as follows 

𝑎௞
ற|0௞⟩ = |1௞⟩ 

=
1

coshଶ𝑟
෍ tanh௡𝑟

௡

√𝑛 + 1|(𝑛

+ 1)௞⟩ூ|𝑛௞⟩ூூ . 

 

 

(12) 

For clarifying the Unruh effect, we find the mean 
density of particles, the expectation value of  〈𝑁〉 ≡

〈0|𝑏௞
ற𝑏௞|0〉,  in the Ω mode. We notice that |0⟩ is the 

Minkowski vacuum. With calculating 〈𝑁〉, one can find 
the density of b-particles in a-vacuum as 𝑛ஐ =

ଵ

ୣ୶୮ (
మഏಈ

ೌ
ିଵ)

.  The energy of e massless particle with 

momentum Ω is equal to 𝐸 = |Ω|. So, this relation is 
equivalent to the Bose-Einstein distribution 𝑛(𝐸) =

ଵ

ୣ୶୮ (
ಶ

೅
ିଵ)

, if we define 𝑇 ≡
௔

ଶగ
 as the Unruh temperature.   

So, an accelerated detector behaves as though it were 
placed in a thermal bath with temperature 𝑇. This is the 
Unruh effect. 

 Now, assume that Alice and Rob initially share the state 
(1), and then Rob undergoes uniform acceleration 
a. Using Eqs. (11) and (12), this situation can be 
expressed with the following 
quantum state 

|𝜓⟩஺ோ಺,಺಺

=
cos 𝜃

cosh 𝑟
|𝛼⟩஺ ෍ tanh௡𝑟

௡

|𝑛௞⟩ூ|𝑛௞⟩ூூ

+
sin 𝜃 𝑒௜థ

coshଶ𝑟
| − 𝛼⟩஺ 

× ෍ tanℎ௡𝑟

௡

√𝑛 + 1|(𝑛 + 1)௞⟩ூ|𝑛௞⟩ூூ 

=
cos 𝜃

2cosh 𝑟
ቈ
|+⟩

𝒩ା
+

|−⟩

𝒩
቉  

 

 

 

 

 

 

 

× ෍ tanh௡𝑟

௡

|𝑛௞⟩ூ|𝑛௞⟩ூூ 

+
sin 𝜃

2coshଶ𝑟
ቈ
|+⟩

𝒩ା
−

|−⟩

𝒩
቉ 

× ෍ tanh୬𝑟

୬

√𝑛 + 1|(𝑛 + 1)௞⟩ூ|𝑛௞⟩ூூ . 

 

 

 

 

(13) 

Tracing over the causally disconnected Region II, one 
can obtain the reduced density matrix as 

𝜌஺ோ಺
 

=
cosଶθ

4coshଶr
ቈ
|+⟩

𝒩ା
+

|−⟩

𝒩
቉ ቈ

⟨+|

𝒩ା
+

⟨−|

𝒩
቉ 

× ෍ 𝑡𝑎𝑛ℎ௡𝑟

௡

|𝑛௞⟩⟨𝑛௞| 

+
sin 𝜃 cos𝜃

4coshଷr
෍ tanhଶ୬𝑟

୬

√𝑛 + 1 

× (𝑒ି௜ ቈ
|+⟩

𝒩ା
+

|−⟩

𝒩
቉ ቈ

⟨+|

𝒩ା
−

⟨−|

𝒩
቉ 

× |𝑛௞⟩⟨(𝑛 + 1)௞| + 𝐻. 𝐶) 

+
sinଶ𝜃

4coshସ𝑟
ቈ
|+⟩

𝒩ା
−

|−⟩

𝒩
቉ ቈ

⟨+|

𝒩ା
−

⟨−|

𝒩
቉ 

× ෍ tanhଶ௡𝑟

௡

(𝑛 + 1) 

× |(𝑛 + 1)௞⟩⟨(𝑛 + 1)௞|, 

 

 

 

 

 

 

 

 

 

 

 

 

(14) 

where |±, 𝑛⟩ = |±஺⟩|𝑛ோ⟩ூ, and the orthogonal basis 
(Eq. (3)) are used. 

4 Quantum Fisher Information of 
Hybrid State in Non-inertial Frame 

 In the field of quantum information processing, parameter 
estimation is a basic task. In quantum metrology, physical 
quantum Fisher information is used to describe the ultimate 
precision that can be achieved by a general parameter 
estimation experiment.  

 Consider an N-dimensional quantum state  𝜌ఒ on an 
unknown parameter 𝜆. If we intend to extract 
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information about 𝜆 from 𝜌ఒ, a set of quantum 
measurement 𝐸(𝜉) should be performed. According to 
classical theory, the quantity of any measurement can be 
specified by a form of information called Fisher 
information. The quantum Fisher information can be written 
as [40, 41] 

𝐹 = ෍
(𝑝́௜)ଶ

𝑝௜

௠

௜ୀଵ

+ ෍ 4𝑝௜𝐹ఒ௜

௠

௜ୀଵ

− ෍
8𝑝௜𝑝௝

𝑝௜ + 𝑝௝
หൻ𝜓௜ห𝜓ሖ

௝ൿห
ଶ

௠

௜ஷ௝

, 

 

 

(15) 

where 𝑝́௜ = 𝜕ఒ𝑝௜, |𝜓ሖ
௝ൿ = |𝜕ఒ𝜓௝ൿ and 𝐹ఒ௜ =

⟨𝜕ఒ𝜓௜|𝜕ఒ𝜓௜⟩ − |⟨𝜓௜|𝜕ఒ𝜓௜⟩|ଶ. From expression (15), one 
can identify that the QFI can be divided into three parts: 
the first term is just the classical contribution if we 
regard the set of nonzero eigenvalues as a probability 
distribution; the second term is a weighted average over 
all pure-state QFI; the last term stems from the mixture 
of pure states and thus decreases the total QFI. 
Now, we return to the state of the system which is 
prepared in the hybrid state in an inertial frame as (1). 
The related density matrix has the following 
expression 

𝜌஺ோ 

=
cosଶ𝜃

4
ቈ
|+⟩

𝒩ା
+

|−⟩

𝒩
቉ ቈ

⟨+|

𝒩ା
+

⟨−|

𝒩
቉ |0⟩⟨0| 

+
cos 𝜃 sin 𝜃

4
 

× ቆ𝑒ି௜థ ቈ
|+⟩

𝒩ା
+

|−⟩

𝒩
቉ ቈ

⟨+|

𝒩ା
−

⟨−|

𝒩
቉ |0⟩⟨1|

+ 𝐻. 𝐶ቇ 

+
sinଶ𝜃

4
ቈ
|+⟩

𝒩ା
−

|−⟩

𝒩
቉ ቈ

⟨+|

𝒩ା
−

⟨−|

𝒩
቉ |1⟩⟨1|, 

 

 

 

 

 

 

 

 

(16) 

which has the non-zero eigenvalue equal to 𝜆 = 1 and 
eigenvector as 

 

 

−
1

√2
[𝑒ି௜థ cos𝜃ඥ1 + 𝑒ିଶ|ఈ|మ

, 

 𝑒ି௜థ cos𝜃ඥ1 − 𝑒ିଶ|ఈ|మ
, 

sin𝜃ඥ1 + 𝑒ିଶ|ఈ|మ
, −sin𝜃ඥ1 − 𝑒ିଶ|ఈ|మ

]. 

 

 

 

(17) 

We find the QFI with respect to 𝜃, 𝐹ఏ, and 𝜙, 𝐹థ as  

𝐹ఏ = 4, 𝐹థ = sinଶ2𝜃, (18) 

which shows that 𝐹ఏ does not depend on 𝜙 and is constant. 
The QFI of 𝜙 depends on the value of 𝜃. In addition, 𝐹ఏ  
and 𝐹థ are irrespective of 𝛼, the hybrid parameter. 

 We assume that Alice is stationary and has a detector 
sensitive only to mode A. Rob moves with uniform 
acceleration and takes with him a detector that only 
detects particles corresponding to mode R. We are 
going to answer this question; what is the QFI when 
Rob undergoes uniform acceleration. 

 First, we consider the QFI associated with 𝜃. In order 
to achieve this aim, we take the reduced density matrix 
(Eq. (14)) which its non-zero eigenvalue for the definite 
value of 𝑛 is 

𝜆௡ =
tanhଶ୬r

coshଶr
λ୬

଴ , 

λ୬
଴ = ቆcosଶ𝜃 +

(n + 1)sinଶ𝜃

coshଶ𝑟
ቇ, 

 

 

(19) 

and its normalized corresponding eigenvector is given 
by 

−
1

ඥ2𝜆௡
଴

[𝑒ି௜థ cos 𝜃 ඥ1 − 𝑒ିଶ|ఈ|మ
, 

𝑒ି௜థ cos 𝜃 ඥ1 + 𝑒ିଶ|ఈ|మ
 , 

sin 𝜃 ඥ1 − 𝑒ିଶ|ఈ|మ √𝑛 + 1

cosh 𝑟
, 

− sin 𝜃 ඥ1 + 𝑒ିଶ|ఈ|మ √𝑛 + 1

cosh 𝑟
]. 

 

 
 

 

 

(20) 

Using Eq. (15) we find that 𝐹ఏ is invariant, that is 𝐹ఏ =

4 independent of the acceleration parameter 𝑟. It means 
that the QFI about 𝜃 is unaffected under the effect of the 
Unruh channel. On the other hand, we find for 𝐹థ 
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𝐹థ =
4cosଶθsinଶθ

coshସr
෍

(𝑛 + 1)tanhଶ௡𝑟

𝜆௡
଴

௡

. 

 

(21) 

As we see, the QFI of 𝐹ఏ and 𝐹థ is irrespective of the 

hybrid parameter, 𝛼 and have no 𝜙 dependence. 
Moreover, The QFI with respect to the parameters 𝜃  
and 𝐹ఏ, is independent of the state parameter 𝜃 while 
the QFI with respect to the parameters 𝜙 and 𝐹థ is state-

dependent and depends upon θ. Figure 2 shows the 𝑟 -
dependence graph of 𝐹థ for a series value of 𝜃. One can 

check that lim
௥→଴

𝐹థ = 𝑠𝑖𝑛ଶ2𝜃 is consistent with the initial 

value. As the acceleration 𝑟 increases, 𝐹థ gradually 

decreases and converges to a non-zero value in the limit 
of infinite acceleration. This is consistent with the fact 
that the Unruh acceleration produces a thermal-like 
effect. The QFI provides a lower bound on the error of 
an estimation. So, quantum estimation would be 
expected not to increase with the increase of 
temperature.  

 

Figure 2. The graph of 𝐹థas a function of 𝑟 and certain values of 𝜃 

for hybrid state in non-inertial motion. The continuous (blue) line is 

plotted for 𝜃 =
గ

଼
, the dashed (magenta) line is plotted for 𝜃 =

గ

଺
, and 

the dotted (green) line is plotted for 𝜃 =
గ

ସ
. 

5 Concurrence 

 In this section, we study the dependence of the 
entanglement of the state (Eq. (1)), on the acceleration 
of the observer. To find out the behavior of 
entanglement, we use the concurrence as a measure of 
entanglement which is defined as [1] 

𝐶 = 2max (0, ඥ𝜆ଵ − ඥ𝜆ଶ − ඥ𝜆ଷ − ඥ𝜆ସ), (22) 

where 𝜆௜(𝑖 = 1, 2,3,4) are eigenvalues of the density 
matrix operator 𝜌𝜌෤ in decreasing order. The density 
operator 𝜌෤ is defined as 𝜌෤ = (𝜎௬ ⊗ 𝜎௬)𝜌∗(𝜎௬ ⊗ 𝜎௬) 

where 𝜌∗ is the complex conjugate of 𝜌 and 𝜎௬ is the 

Pauli matrix. The nonzero values of the concurrence 
indicates that the subsystems are entangled. 

 First, we assume that Alice and Rob are in the inertial 
frame. Considering the density matrix (Eq. (16)), one 
can find the concurrence as 

𝐶 = 2cosθsinθඥ1 − 𝑒ିସ|ఈ|మ, (23) 

 Figure 3 shows the concurrence against 𝜃 and some 
values of 𝛼. As we expect, the maximum correlation 

between subsystems takes places around 𝜃 =
గ

ସ
 and  has 

a symmetry with respect to 𝜃 =
గ

ସ
. 

 

 

Figure 3: The graph of concurrence against 𝜃 and various values of 
𝛼. The continuous (blue) line is plotted for 𝛼 = 0.5, the dashed 
(magenta) line is plotted for 𝛼 = 0.7 and the dotted (green) line is 
plotted for 𝛼 = 1.  

 Now, we study the behavior of entanglement in the 
situation that Rob has uniform acceleration and Alice 
remains stationary. Using the reduced density matrix 
(Eq. (14)), the concurrence can be obtained as follows  

𝐶

=
2cosθsinθ

coshଷr

× ඩ(1 − 𝑒ିସ|ఈ|మ
) ෍ tanhସ୬𝑟

ஶ

௡ୀ଴

(𝑛 + 1). 

 

 
 

(24) 
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The concurrence of the system with accelerated motion 
has been plotted in terms of 𝑟 and various values of 𝜃 in 
figure 3. The figure illustrates that, when the parameter 
𝑟 increases, the entanglement decreases, and ultimately 
in enough large values of r the correlation between 
subsystems will be removed, completely.  

 

Figure 4: The graph of concurrence against acceleration 
parameter 𝑟 and various values of 𝜃. The continuous (blue) 

line is plotted for 𝜃 =
గ

଼
 , the dashed (magenta) line is plotted 

for 𝜃 =
గ

଺
 and the dotted (green) line is plotted for 𝜃 =

గ

ସ
. We 

set 𝛼 = 3. 

6 Squeezing 

 The squeezing phenomenon occurs when the quantum 
fluctuation in one of the field quadratures takes the 
value below the value of vacuum or canonical coherent 
states. In order to investigate the squeezing of the two-
mode entangled hybrid state, we consider the two-mode 
quadrature operators as 

X෡ =
aො + aොற + b෠ + b෠ ற

2√2
, Y෡ =

aො − aොற + b෠ − b෠ ற

2𝑖√2
, 

(25) 

that obey the commutation relation 

ൣX෡, Y෡൧ =
i

2
 

(26) 

The uncertainty relation for these operators is given by 

൫ΔX෡൯
ଶ
൫ΔY෡൯

ଶ
≥

ଵ

ସ
, where  ൫ΔX෡൯

ଶ
= ൻX෡ଶൿ − ൻX෡ൿ

ଶ
 and ൫ΔY෡൯

ଶ
=

ൻY෡ଶൿ − ൻY෡ൿ
ଶ

. The state is called two-mode squeezed state 

respect to X෡ or Y෡ component, if the parameters 

Sଡ଼ = 4൫ΔX෡൯
ଶ

− 1 , Sଢ଼ = 4(ΔY෡)ଶ − 1 , (27) 

satisfy the inequalities −1 < Sଡ଼ < 0  

or −1 < Sଢ଼ < 0. 

However, it is noteworthy that, if one quadrature has 
less noise than a coherent state or a vacuum state, the 
fluctuations in the other quadrature must be enhanced  
until the uncertainty relation is preserved. According to 
this point, one of the 𝑆௑ or 𝑆௒ parameters in Eq. (27) can 
take negative values. 

 In the following, the existence of squeezing is studied 
in two cases: inertial and non-inertial motions. At first, 
we consider the system in the inertial motion in which 
the subsystems have no acceleration relative to each 
other. In this situation, for the hybrid state (Eq. (1)), the 
following relations are obtained 

ൻX෡ൿ =
1

2ඥ2
ቀ(cos

2
θ − sin2θቁ ൫𝛼 + 𝛼∗

൯ 

+cosθsinθ𝑒ିଶ|ఈ|మ
(𝑒௜థ + 𝑒ି௜థ)) , 

 
 

(28) 

ൻX෡ଶൿ =
1
8

(𝛼2 + 𝛼∗2 + 2|𝛼|2 + +2𝑠𝑖𝑛2𝜃 

+2cosθsinθ × 𝑒ିଶ|ఈ|మ
((𝛼 + 𝛼∗)𝑒௜థ + (𝛼 −

𝛼∗)𝑒ି௜థ)). 

 

 

(29) 

Using Eqs. (27)-(29), 𝑆௑ is plotted against 𝛼 and various 
values of 𝜃 in Fig. 5. As it is obvious, the parameter 𝑆௑ 
takes negative values for small values of 𝜃, and 𝛼. So, 
the hybrid state behaves as a two-mode squeezed state. 

 

Figure 5: The graph of 𝑆௑ as a function of 𝛼 and certain values 
of 𝜃 for hybrid state in the inertial motion. We set 𝜙 = 0. The 

continuous (blue) line is plotted for 𝜃 =
గ

ଵ଺
.  , the dashed 

(magenta) line is plotted for 𝜃 =
గ

ଵଶ
. and the dotted (green) 

line is plotted for 𝜃 =
గ

଼
. 

 Now, we extend the studies to the non-inertial motion 
in which Rob has uniform acceleration. By applying the 
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expression of the hybrid state in the non-inertial frame 
(Eq. (13)), one can obtain 

ൻX෡ൿ =
1

2ඥ2
ቀ(cos

2
θ − sin2θቁ ൫𝛼 + 𝛼∗

൯ +

cosθsinθ cosh 𝑟 𝑒−2|𝛼|2(𝑒𝑖𝜙 + 𝑒−𝑖𝜙)). 

 

(30) 

ൻX෡ଶൿ =
1

8
(𝛼2 + 𝛼∗2 + 2|𝛼|2 + 2 

+2sinଶθ(2coshଶ𝑟 − 1) 

+2cosଶθ(2coshଶ𝑟 − 1) 

+2cosθsinθ cosh 𝑟 

× 𝑒ିଶ|ఈ|మ
((𝛼 + 𝛼∗)𝑒௜థ 

+(𝛼 − 𝛼∗)𝑒ି௜థ)). 

 

 

 

 

 

 

(31) 

The behavior of 𝑆௑ for different values of the 
acceleration parameter 𝑟 has been plotted in Fig. 6. The 
figure displays that for small values of the parameter 𝑟, 
the hybrid state remains in the squeezed state. 
However, with increasing the parameter 𝑟, the depth of 
the squeezing decreases until for values around 𝑟 = 0.2 
before it completely disappears. Therefore, the two-
mode squeezing between subsystems has been degraded 
by the Unruh effect in non-inertial frames. 

 

Figure 6: The graph of 𝑆௑ as a function of 𝛼 and certain values 
of 𝑟 for the hybrid state in non-inertial motion. We set 𝜙 = 0. 
The continuous (blue) line is plotted for 𝑟 = 0, the dashed 
(magenta) line for 𝑟 = 0.15, and the dotted (green) line is 
plotted for 𝑟 = 0.3. 

7 Conclusions  

 In this paper, we have studied the behavior of the 
system that is prepared in the two-mode entangled 
hybrid state where one of the subsystems is uniformly 

accelerated. We considered parametrized states, where 
the 𝛼 parameter is introduced to describe coherent states 
of the hybrid state, and the weight parameter 𝜃 and 
phase parameter 𝜙 are introduced to two-mode 
entangled states. We consider that Alice and Rob each 
share one mode of the state and then Rob is uniformly 
accelerated. At first, we computed the quantum fisher 
information of the system when Rob is uniformly 
accelerated. We found that the QFI of 𝜃, 𝐹ఏ, remains 
invariant and does not change with the accelerated 
parameter r while the QFI of 𝜙, 𝐹𝜙, decreases with 

increasing acceleration. It is remarkable that for large 
values of 𝑟, 𝐹𝜙 reaches non-zero values.  

 In continuation, we investigated the behavior of the 
entanglement by using the concurrence measure. The 
results indicated that the concurrence decreases with 
increasing the acceleration parameter 𝑟, and for enough 
large values of 𝑟 tends to zero. So, comparing the QFI 
and concurrence, QFI has a more subtle physical 
structure than concurrence. Finally, we have studied the 
variation of the two-mode squeezing of the hybrid state. 
When both observers are in the inertial frame, the 
hybrid state is a two-mode squeezed state for small 
values of 𝜃 and 𝛼. While Rob accelerates uniformly, the 
width and depth of two-mode squeezing decrease and 
disappear for large values of 𝑟.  

 In summary, properties of the entangled hybrid state 
have been investigated in a non-inertial frame. Due to 
the obtained results, we found that the degree of 
entanglement of the hybrid state decreases with 
increasing the acceleration parameter 𝑟. Nevertheless, 
the hybrid state for small values of the acceleration 
parameter 𝑟, is still an entangled state and can be used 
for quantum information processing tasks.  

 The obtained results for QFI indicated that the 
estimation of parameter 𝜃 is not affected by the 
acceleration of the system. But, the accuracy of the 
estimation of parameter 𝜙 decreases slightly with 
increasing acceleration. Therefore, the hybrid entangled 
state in the non-inertial frame is still a suitable quantum 
state in the field of quantum metrology [12] 

 Our results can be used experimentally in free-space 
quantum experiments. Particularly, consider a quantum 
mechanical system consisting of two entangled photons. 
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One photon of each pair is detected on the ground while 
the other is sent to the International Space Station (ISS). 
Different theoretical models have been proposed to 
analyze this scenario with widely varying results [42, 
43]. Understanding the entanglement of a hybrid state, 
composed of the coherent state which is treated as a 
semiclassical state, and the vacuum and single-photon 
states that are successfully demonstrated in recent 
experiments [34, 35], plays an important role in these 
experiments [44]. As a relevant example, space-based 
quantum clocks allow for the distribution and 
synchronization of timing information and promise 
performance upgrades of existing global navigation 
satellite systems (GNSS). These clocks also enable 
distributed quantum information processing such as 
faster algorithmic processing of data through distributed 
quantum computing [45]. 

 Our results are on one hand an interesting application 
of quantum information techniques in a relativistic 
setting and on the other hand, provide a deeper 
understanding of the characterization of the inherent 
relativistic effects on the distribution of information. 
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