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 Optimization of electron scattering has been investigated using random potential 

barriers. Random potential barriers can be defined in two situations. In the first case 

when line defects are placed regularly on the surface of the topological insulator, but 

their strength changes randomly. In the second case when the potential barriers strength 

are constant while location of line defects on the surface of the topological insulator are 

changing randomly. To obtain better results, probability of transmission in the random 

potential states are calculated N times. These N values are averaged and the result is 

compared with the probability of transmission in the regular case. It seems that, in 

propagating of incident electrons for some amounts of incident energy, number of 

defects, strength of potential, even direction of propagation, the results are close to the 

values obtained for the regular case. For some amounts of incident energy or some 

structural parameters significant differences are seen. We encounter large variation in 

electrical conduction, when the location of potential barriers change randomly, relative 

to the case that strength of random potential is changed. In fact, the reason for higher 

electrical conductivity is the constructive interference that occurs between propagating 

electron waves. Therefore, in the presence of such random potential barriers, the 

conduction and transmission of incident electrons have been improved. 

1 Introduction 

 Recently, a new quantum behavior in the field of 

condensed matter physics and materials science has 

attracted much attention. The materials in which this 

strange behavior is observed are known as topological 

insulators [1], [2]. These materials with surface states 

with and without energy gap in the bulk of insulation 

result from a strong spin-orbit interaction and time-

reversal symmetry [3], [4], [5], [6]. In other words, the 

superficial states of conduction are maintained in such 

materials as long as the time-reversal symmetry is not 

broken [7], [8], [9]. 

 Impurities on the surface of topological insulators 

cause scattering of the wave function showing 

interesting electronic properties [10], [11], [12], [13]. 

Impurities in fact, in the presence of an electric field 

and a spin-orbit coupling, cause electron scattering. 

This effect has been observed experimentally in thin 

layers of GaAs and InGaAs [14]. Impurities also 

deform the 3D Dirac cone in ������ [13]. In other 

words, magnetic impurities can create a local energy 
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gap by suppressing the local state density and inducing 

an interaction RKKY (Ruderman, Kittel, Kasuya, 

Yosida) in the system [10], [11]. 

 Surface defects and ripples in topological insulators 

can also scatter Dirac electrons. Bismuth-based 

topological insulators such as ������ and ������ [15] 

are inexpensive materials that have excellent electrical 

conductivity on their surfaces [16], [17]. Okada et al. 

[18] created a series of local ripples on the surface of 

������. They proposed 2D defects to control the 

properties of Dirac fermions in topological insulators. 

Such local ripples can be created by periodic buckling 

during sample growth or by chain induction through a 

piezoelectric crystal [18]. 

 One-dimensional periodic potentials on the surface of 

these materials are responsible for trapping surface 

electrons and displacing energy levels. In this case, 

regular linear defects (local ripples) are modeled by 

the delta-function potential [19], [21]. Using an 

approach of quantum mechanics, Ting and An 

investigated the scattering of surface states of a single 

potential barrier in ������ by the hexagonal warping 

effects [20]. They showed that, passing of the incident 

electrons under certain conditions when line defect is 

along Γ	 can be perfect, and since there is a limited 

possibility for the reflection of electrons, when the 

incident wave has a component along Γ
 its Fermi 

energy increases. The warping parameter plays an 

important role in changing the constant energy contour 

(CEC) from a circle to a hexagon and then to a 

snowflake shape with sharp corners. The torsion of the 

CEC is modulated by an external magnetic field [22], 

[23]. However, at high energies, where the warping 

effect is strong, it may significantly increase the 

electrical conductivity and thus the induction passage 

channels shown by the CEC snowflake shape [23]. The 

influence of the local delta-function potentials in two 

and three dimensions along the Γ
 on the transmission 

of incident electrons in ������ has been reported [19]. 

We have also reported up to 20 barriers in both 

directions Γ
 and Γ	 in our previous work [24]. the 

results show that the electrical conductivity 

fluctuations with strong delta-function potential and 

that the electronic transmission on the surface of 

topological insulator can be controlled by structural 

parameters. 

 In this paper, we try to investigate electronic 

transmission on the surface of a topological insulator 

in presence of random ripples. We consider a series of 

line defects with values of random strength and 

random distance from each other in two directions Γ
 

and Γ	. The transmission coefficients as well as the 

conductivity of the incident electrons are calculated for 

different structural parameters such as: number of 

potential barriers, strength of potential, distance of 

barriers, and the energy of the incident electron in two 

modes. At first the strength of potential barriers and 

then location of potential barriers varies randomly. In 

each case we obtain the values of transmission 

coefficiants and conduction N times, then we calculate 

the mean values, and finally the results are compared 

to the cases in which the ripples were regular.  

2 Method 

 We consider 3D topological insulator ������ with 

strong warping effect and Dirac cone on the surface. 

By adjusting the Fermi level of the surface states, we 

can avoid the interaction between the surface and 

volume states [25]. Single particle Hamiltonian for 

surface electrons with torsional hexagonal states can 

be expressed as follows:  

H�p�, p�� = v�p�σ� − p�σ�� + λ�p�� − 3p�p���σ�, (1) 

since p� = −iℏ ∂� and  ! = −�ℏ"! are the 2D 

momentum operators of surface electrons, and σ#(j =
x, y, z) are the Pauli matrices. ( = 2.55 eV. Å is the 

Fermi velocity and 0 = 250 eV. Å� is the warping 

parameters [25], [26]. For a more physical expression 

of the electron wave function propagated in the Γ
(2) 

direction, we express it as follows:  

345(67) = 8
9|;<(5=7)|

35(67)                             (2)  

where 35(67) is the eigenstate of the Hamiltonian 

exprssed by Eq. (1) and (>(?=7) is the electron group 

velocity along the x-axis [20], [24]. 
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Figure 1. Fixed energy contours are displayed in the plane ?> − ?!
for energies (70, 170, 250, and 400) meV. 

Figure 2. The roots are investigated in two states on a constant 

energy contour when the contour is hexagonal. The diagrams (aa), 

(cc), and (ee) show six roots. In the diagrams (bb), (dd), and (ff) 

four roots are shown [20]. 

 Figure 2, the CEC snowflake states show the points 

more clearly on it; the amount of Fermi energy has 

been taken very large. In diagram (2aa), as we can see, 

the direction of wave motion is considered in the 

direction of the momentum ?>, lines A and E intersect 

the energy contour at only two points (a,b) or (i,k), 

which shows that for values of ?! according to 

diagram (2aa) we will have only two real roots and 

four mixed roots. For certain values of ?! that this 

range is marked on CEC using dashes B and D, the 

line C intersects the contour at six points (c,d, e,f,g,h) 

which shows that the energy equation in ?> direction 

has six real roots for specific values of ?!. Graph (2cc) 

shows the state of six real roots and two real roots in 

the ?> − ?! plane. In diagram (2ee), shematically, the 

case where we have two real roots in which the 

incident wave according to diagram (2aa) has a certain 

?! momentum,  scattered by a defect, we have a 

reflected wave and a transmission wave. In the case 

that we have six real roots, the incident electron wave 

has a certain amount of momentum ?! as shown in 

diagram (2aa), scattered by a defect, we have three 

reflected waves and three passing waves. In diagram 

(2bb), in which the direction of motion of the incident 

electron wave is in the ?! direction, for values of ?>
(zero momentum value is indicated by the dashed line 

B) line A intersects the CEC at only two points, which 

shows that the energy equation in terms of ?! has only 

two real roots and two purely imaginary roots. The 

range of momentum is shown in diagram (2bb) by the 

dashed lines B and D, line C intersects the CEC at four 

point (d,e,f,g), which shows that the energy equation 

has four real roots. Diagram (2dd) shows the state of 

four real roots and two real real roots on the ?> − ?! 

plane. Diagram (2ff) shematically shows the incident 

electron wave has had a specific motion according to 

diagram (2bb), when an electron encountered a defect 

on the surface of insulator in the ?> direction, it will 

have only one reflected wave and one transmission 

wave. If the incident wave according to diagram (2bb) 

has had a momentum ?>  in the range between the 

dashed lines B and D, we will have two reflected 

waves and two transmitted waves. According to the 

shapes (2cc) and (2dd) the roots have positive and 

negative pairs. When all the roots are real, according to 

the diagrams (2ee) and (2ff) a wave travels in 

directions ?> and ?! in the a holelike form [24]. 
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3 A SUPERLATTICE ALONG @A(B) or 

@C(D) 

 
 Here ripply structures include N delta-function 

potential with random potential strength and random 

distance from each other on the surface of topological 

insulator ������, along E or F axis. The wave 

function of electron in the region (G − 1)H < 2 < GH, 

is the eigenstate of equation {K(−�"> , ?!) +
∑MN8OPQ RS(2 − GH)}35

(O)(67) = U35
(O)(67). Because of 

this, the eigenvalue equation is a third-order partial 

differential equation relative to 2, so we will have 

three boundary conditions [20], [24]. After applying 

the boundary conditions on the wave function and 

using the 6 × 6 transfer matrix, the relationship 

between the GXY coefficient and the (G + 1)XY 

coefficient is obtained [24]. 

 Note that the Hamiltonian is not symmetric under 

transformation  > ⟷  !, therefore, the electron wave 

function in the region (G − 1)H < [ < GH, is an 

eigenstate of a second-order partial differential 

equation relative to [: {K(?> , −�"!) + ∑MN8OPQ RS([ −
GH)}35

(O)(67) = U35
(O)(67), so two boundary conditions 

will be obtained [20], [24]. By applying boundary 

conditions to the wave function, a 4 × 4 transfer 

matrix is obtained, which relates the GXY coefficient to 

the (G + 1)XY coefficient [24]. According to Fig. 2, if 

all roots are real, the  transmission coefficient T is the 

sum of |]|�’s. If two roots are real, the transmission 

coefficient T is only |]8|� [20]. In the case of N 

barriers, when the potential strength is random, every 

one receives a random value in the range (R ±
0.1)�_. Å, then the transmission coefficient is 

calculated. This operation is repeated N times and N 

values are obtained for the transmission coefficients 

before averaging the values. Also when the distances 

between potential barriers are random, in each 

calculation, location of barriers recieves arandom 

values in the range (H ± 0.1)Å. This operation can be 

repeated few times to obtain few transmission 

coefficients. Averaging these values we draw the 

transmission coefficient diagram in terms of H(Å) or 

R(�_. Å). We observe fluctuations in the transmission 

diagram and that we can compare it with the 

transmission diagram of a regular superlattice. The 

following equation is used to calculate �(U, `):  

�(U, `) = 8
M ΣbM�(U, `)                             (3) 

 To calculate the electrical conductivity of topological 

insulators in the Γ
(2) direction, potential strength of 

each N barriers or the distance of the barriers are 

random values in the range (R ± 0.1)�_. Å and (H ±
0.1)Å. This operation can be repeated few times before 

averaging the obtained values for electrical 

conductivity. The following equations are used to 

calculate the electrical conductivity and its average 

[19]:  

c/cQ = ef/�
Q �(U, `)cos`H`                 (4)                

c/cQ = 8
M ΣbMc/cQ                                   (5) 

where ` = arctan(?!/?>) indicates the angle of 

incident electron and cQ is a constant.  

 Figure 3: Transmission coefficients in terms of momentum k�. 

Ripples are paralell to 2 axes while o is the number of them 

distributed randomly in direction [. 

4 Results and discussion 

 In Fig. 3 the lattice constant H in diagrams (a) and (b) 

is a random value in range (20 ± 0.1)Å in solid line 

curves, and a constant value, 20Å for dashed line 

curves. The lattice constant H in diagrams (c) and (d) is 

a random value in the range (10 ± 0.1)Å for solid 

curves and a constant value, 10Å for dashed line 

curves. In diagrams (a) and (b) the incident electron 

energy is 180meV and 400meV in diagrams (c) and 

(d). The number of line defects in diagrams (a) and (c) 

is N=5 and N=20 in diagrams (b) and (d). Dependence 

of energy and wave number of the incident electron in 

transmission through the line defects with random 
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lattice constant in Bi�Te�, plotted in Fig. 3. The 

transmission coefficient in terms of k� at two incident 

energies E = 180meV and E = 400meV for 5 and 20 

barriers expanded along the y-direction are shown. 

Location of potential barriers takes a random value in 

the range (20 ± 0.1)Å in diagrams (3a) and (3b) and 

takes a random value in range (10 ± 0.1)Å in 

diagrams (3c) and (3d). Each point of the solid black 

lines with (U = 5eV. Å), and blue (U = 1eV. Å) are 

obtained 50 times, averaging these values leads to T 

which is shown in the diagrams. The values of T in the 

dashed line diagrams of Fig. 3, with the same potential 

strength (1.5)eV. Å, are plotted in diagrams (3a), (3b) 

for lattice constant d = 20Å and in diagrams (3c), (3d) 

for lattice constant 10Å. In this figure for a smaller 

number of  barriers there is more difference between T
and T, because with increasing the number of barriers, 

the random values increase and as a result, the mean 

value is averaged with more numbers, which bring it 

closer to a fixed value. By increasing the incident 

energy for less number of barriers, the average values 

show a better transmission coefficient than the fixed 

transmission values. The reason is due to the 

constructive interference modes [28], caused by the 

random spacing of the barriers. At the peaks of the 

transmission coefficient curves, the conditions for the 

transmission of electrons in the steady state are better 

seen. 

Figure 4: Transmission coefficients in terms of momentum k>. 

Ripples are paralell to the [ axes while o is the number of them, 

distributed randomly in direction x. Because in the random mode, 

destructive interference takes place beween the transmitted and 

reflected waves. 

In Fig. 4  the distance of potential barriers in solid 

curves is in the range (10 ± 0.1)Å. For dashed line 

curves the constant value is 10Å. The number of 

barriers in diagrams (a) and (c) are o = 5 and in 

diagrams (b) and (d) are o = 20. The potential 

strength of solid line and dashed line curves is 

(1,5)eV. Å. Incident energy of electron in diagrams (a) 

and (b) is E = 170meV and in diagrams (c) and (d) is 

250meV. In Fig. 4 line defects were extended along 

the x-direction. As it is shown in the diagrams, 

transmission coefficients in the random lattice constant 

case and regular lattice constant case are plotted in 

terms of k� at two incident energy, one less than the 

critical limit E = 170meV(< 180meV) and the other 

more than the critical limit E = 250meV. Like Fig. 3, 

the lattice constant H selects random values in the 

range (10 ± 0.1)Å. Note that the incident electron 

moves in the direction [, so for low and high energies 

and two barriers, there is a little difference between T 

and T in graph (d) for U = 1eV. Å except at the peaks. 

This slight difference may be due to the fact that the 

sharp peaks became smooth in the averaging  process. 

In diagram (4a) since the peaks are not sharp, there is 

no noticeable difference between the averaged 

transmission coefficient in the random case and the 

transmission coefficient in the regular case. While in 

diagrams (4b) and (4d) where U = 5eV. Å there are 

more sharp peaks that have been averaged that lead to 

correct transmission coefficients. In diagram (4d), 

where the potential strength is U = 1eV. Å after 

averaging, a significant decrease can be seen in the 

transmission coefficient relative to the regular case 

which is due to non-constructive interference modes. 

For more number of barriers, diagrams (4b) and (4d), 

with increasing number of peaks, we see a decrease in 

the average amount of transmission coefficient at the 

same peak. 

 By comparing Figs. 3 and 4, we see that, amount of 

transmission coefficient through random defects is 

strongly dependent on the direction in which they are 

located. In Fig. 4, random values of the lattice 

constants (distance between potential barriers) that 

lead to the average value of T have less influence than 

T due to regular superlattice except for diagram (4d) 

with U = 1eV. Å which is an exception. In Fig. 3 this 

effect is more visible, which is due to the properties of 

electrons transmitting through the line defects in the 2
and [ directions. Sourse of these differences are in 
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their boundary conditions and also Hamiltonian 

asymmetry under the transformation k� ⟷ k� [24]. 

 Figure 5, the potential strength of solid line curves  are 

in the range (5 ± 0.1)eV. Å while for dashed line 

curves, the of potential height of barriers is 5eV. Å. 

The distance between potential barriers for solid line 

and dashed line curves is (10,20)Å. The energy of the 

incident electron in diagrams (a) and (b) is 180meV 

and in diagrams (c) and (d) is 400meV. Number of 

potential barriers, which is in the y-direction, in 

diagrams (a) and (c) are N=5 and in diagrams (b) and 

(d) are N=20. 

 Figure 6 potential barriers are in the x-direction, there 

are two categories of solid line and dashed line graphs. 

The heights of random potential barriers are in range 

(5 ± 0.1)eV. Å while the height of regular potential 

barriers is 5eV. Å. The distance between potential 

barriers for both categories of curves is (10,15)Å. In 

diagrams (a) and (b) energy of the incident electron is 

170meV and in diagrams (c) and (d) is 250meV. The 

number of defect lines in diagrams (a) and (c) are N=5 

and in diagrams (b) and (d) are N=20. 

 Figure 5: The transmission coefficient for barriers of random 

height. Ripples are paralell to 2 axes and o is the number of them  

in direction [. 

 In Figs. 5 and 6 instead of random distance between 

barriers, we have selected the strength of potential 

barriers randomly. In Fig. 5 we consider the random 

potential barriers in the y-direction. Transmission 

coefficient in terms of k� are plotted for two set of 

curves in each graph. Solid curves which are the mean 

transmission coefficient have been calculated using 

random values for potential strength in range U = (5 ±

0.1)eV. Å and dashed line curves are transmission 

coefficient using a fixed value U = 5eV. Å for barriers 

height. In both cases distance between barriers are 

(10,20)Å. At incident energies lower than critical 

limits, by reducing the distance between potential 

barriers from 20Å to 10Å, the difference of mean 

value of transmission coefficients T, and T increase. 

But at higher incident energies the difference between 

T and T decreases. Specially in the case that the 

number of barriers increases, the difference in the 

transmission peaks is obvius, which can be due to the 

constructive interference of transmitted and reflected 

electron waves. Dependence of incident energy and 

spatial distance between the superlattice line defects in 

Bi�Te� are plotted in Fig. 6 for random and fixed 

potential strengths. 

 Figure 6. The transmission coefficient for barriers of random 

height. Ripples are paralell to the [ axes while o is the number of 

them  in direction 2. 

 Transmission coefficients in terms of k� for two 

incident energies E = 170meV(< Ex) and E =
250meV(> Ex) are shown for o = 5 and o = 20 line 

defects extended along the x-direction. The amount of 

potential strength that each barrier selects randomly is 

in the range of (5 ± 0.1)eV. Å. Solid curves show the 

mean value of the transmission coefficient, T, and 

dashed line curves show the value of the transmission 

coefficient of regular superlattice, T, for two fixed 

lattice constant (10,15)Å. When electron waves 

propagate in the 2-direction, the difference between T 

and T is in sharp peaks. For low number of barriers of 

(graphs (6a) and (6c)) the difference between T and T 

decreases with increasing incident electron energy. 

Also for more number of defect lines (graph (6b) and 
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(6d)) transmission coefficients decrease with 

increasing of the incident electron energy which leads 

to sharp peaks. This small difference, is due to low 

effect of random potential strength on the interference 

modes. Solid line curves are mean values of electrical 

conductivity for random barriers in terms of distance 

between barriers and potential strength while dashed 

line curves are electrical conductivity for regular 

superlattice. Diagram (a) is the mean value of the 

electrical conductivity for random potential strength in 

the range (5 ± 0.1)eV. Å, and the dashed line curve is 

electrical conductivity for fixed value U = 5eV. Å. 

Diagram (b) is the mean value of the electrical 

conductivity for random distance between barriers in 

range (10 ± 0.1)Å and dashed line curve is electrical 

conductivity for fixed value d = 10Å. The incident 

energies for both categories in black and blue curves 

are 180meV and 400meV respectively. 

 On the surface of topological insulators, electrical 

conductivity can be checked by the movement of 

Fermi electrons. In Fig. 7, electrical conductivity 

calculated for o = 5, extended in y-direction where o
is number of line defects. In this figure each point of 

graphs in Fig. 7 is the mean value of 50 calculation for 

random input variables. In diagram (7a) for 400meV
incident electron energy, there is very little difference 

between the mean values of electrical conductivity in 

the random case, 
z

z{
, and its counterpart in regular 

superlattice, 
z

z{. In Fig. 7a at 180meV incident electron 

energy, for those values of H which is nearly less than 

10Å there is a large difference between the electrical 

conductivities in random and regular cases. After 10Å, 

there is no difference between these two values, 

because of interference of different modes. In diagram 

(7b), in solid line curves where the strength of 

potential barriers are random, electrical conductivity 

has a large difference with its counterpart in regular 

case, plotted by dashes line curves. Electrical 

conductivity in averaged mode, at least in a wide range 

of R is larger than electrical conductivity in regular 

superlattice. This behavior is due to the constructive 

interfrence of modes, caused by random distance 

between barriers. There are well-defined peaks which 

decrease and increase with increasing the thickness of 

the central layer of the structure. This behavior is a 

result of resonant tunneling through structure and 

quantum-well states formed in the central layer [29], 

[30], [31], [32]. 

Figure 7. Diagram (a) is Electrical conductivity in terms of 

distance between barriers and diagram (b) is Electrical conductivity 

in terms of potential strength. 

4 Conclusions 

 In summary, we compared transmission coefficients 

and electrical conductivities of two cases: random 

potential include potential strength and lattice constant, 

with regular superlattice. In both cases we used the 

Dirac delta-function form for potential barriers. By 

changing the structural parameters such as, potential 

heights, distance between barriers, energy of incident 

electrons, and direction of incident electrons 

significant differences are seen in the transmission 

coefficients and electrical conductivity for random and 

regular cases. Generally, randomness of potential and 

interfering between the transmitted and reflected  

electron waves are responsible for these behaviors. In 

electrical coductivity, there are more differences 

between the averaged values of random superlattice 

and fixed values of regular superlattice. In a situation 

where the lattice constant is random, the mean value of 

electrical conductivity is higher than its counterpart 

with fixed lattice constant. This suggests that random 

potentials can be closer to the real behavior of surface 

conduction in the Bi�Te� topological insulator. 

Therefore, by creating random potential barriers, the 

electrical conductivity of incident electrons is  
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improved. Defect resonance modes have been reported 

by STM (scanning tunneling microscopy) for incident 

energies less than 200meV above the Dirac point 

surface [12], [33], [34]. This formalism can be 

generalized to the infinite random potential barrier on 

the surface of these insulators.  
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