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In a previous study, one of the authors of this work calculated the solvation 

force of a hard ellipsoid fluid with hard Gaussian overlap potential using hard 

needle wall interaction and non-linear equation proposed by Grimson- 

Rickyazen. In the present study, using density functional theory and extended 

restricted orientation model, the solvation force of hard ellipsoid fluid in the 

presence of more realistic rod-sphere and rod-surface interactions si calculated. 

We investigate weak and strong molecule-surface coupling strengths. The 

colloids distance effects on density profiles are calculated. We could not find 

the exact or simulation results for comparison. The results in the case   3.0k   

are compared with the solvation force of hard Gaussian overlap fluid and hard 

needle-wall interaction. The results corresponded, qualitatively. 
  

 

1 Introduction 
 

 Structure of fluids, are altered near colloidal 

particles. The force between two colloids is called 

solvation force. In this paper the solvation force in 

fluids of hard ellipsoidal molecules with the new 

particle- wall interactions is calculated. This force 

has applications in industries, biological fluids, 

foods, chemical and medical products [1]. 

Immersed particles with the scale of 10 μm to 10 nm 

create solvation force.  

 There are different methods to calculate the solvation 

force. It was calculated for confined polar and 

nonpolar fluids [2-9] by experimental and Monte 

Carlo simulation [10] methods. Because of the 

simplicity it was studied extensively in simple 

spherical molecular fluids [11-15]. Furthermore it 

was obtained by Monte Carlo simulations for thin 

layer of Gay-Berne fluid [16, 17] between two 

solid walls [18, 19]. In confined hard ellipsoidal 

molecular fluids with soft particle-wall 

interactions it has not been much studied 

theoretically [20]. 

 In one of our previous studies [21], immersed 

colloidal particles in a fluid of hard ellipsoidal 

molecules with hard Gaussian overlap (HGO) potential 

and hard needle-wall (HNW) interaction [22] was 

studied. In this paper, immersed colloidal particles in a 

fluid of hard ellipsoidal molecules with more realistic 

rod-sphere (RSP) and rod-surface potentials (RSUP) 

[23] are considered. The RSP describes the interaction 

between a Gaussian ellipsoid and a sphere located in 

the surface plane. In RSUP each particle effectively 

interacts with infinity spheres located in the surface 

plane [23]. The hard ellipsoid (HE) particles do not 



Firouzi & Avazpour/ Journal of Interfaces, Thin films, and Low dimensional systems 

 

128 
 

interact directly with the substrates, rather another hard 

ellipsoid is inserted in each particle. As shown in      

Fig 1, in both models, HE molecules absorb into the 

walls. 

 

 
 

Figure 1. The two particle-wall configurations, (a) RSP and          

(b) RSUP interactions [23]. 

  

 We use the density functional theory (DFT) to 

study the surface influence on liquid crystalline 

systems. The density functional theories [24, 25] 

are capable of predicting the phase diagram of 

liquid crystals [26,27], and also capable of 

describing the structure near a solid surface and 

phase transition [25]. Allen [28] showed even the 

simplest density functional theory namely, the 

Onsager [29] theory can describe the structure of 

the surface layer under the influence of external 

perturbations. This theory has been used to study 

the thermodynamics of homogeneous and 

structural properties of inhomogeneous molecular 

fluids, such as hard ellipsoidal fluids (HE) [30, 

31], hard circular cylinders and hard rectangular 

rods [32,33] and HGO [22] fluids confined 

between planar walls. Teixeira [31] used the 

Onsager approximation of density-functional 

theory with a simple Parsons–Lee re-scaling to 

study a hybrid-aligned liquid crystal under a very 

strong confinement. Also, Gurin et al. [34] studied 

positional ordering of hard cylinders in tubular 

nanopores and compared the results with classical 

DFT. 

 Here we use the hyper-netted chain (HNC) 

density function proposed by Rickayzen and co-

workers [35]. The grand potential of a confined 

liquid crystal can be written as a functional of the 

number density of molecules in any direction. 

After minimizing the grand potential we can 

obtain the equilibrium number densities, then we 

obtain the density profile, the average number 

density [33, 36], and order parameter of a liquid 

crystal confined between walls before calculating 

the  solvation force. 

 The extended restricted orientation model 

(EROM) [37] based on the density functional 

theory (DFT) and the new direct correlation 

function (DCF) of Ref. [38] are used to calculate 

the number density. The RSP and RSUP [23, 39] 

are used for interaction of colloids and hard 

ellipsoids with HGO type potential [40] which 

hare also considered for interaction between 

ellipsoid molecules. The exact contact distance of 

hard ellipsoid (HE) molecules is considered 

instead of the approximate shape parameter of 

Ref. [39].  For calculation of solvation force the 

equations which have been proposed by Grimson 

and Rickyazen, [15, 41] are used. Solvation forces 

are calculated by using the obtained number 

densities. Numerical calculations are done by the 

Fortran software and iteration method [42].  

 In Section 2, the formalism of solvation force is 

introduced. In Section 3 the solvation force of a 

hard ellipsoid fluid with RSP and RSUP 

interactions is calculated. Finally in Section 4 we 

obtain the results and present the discussion and 

conclusions deduced from this work and propose 

some directions for future studies. 

2 Formalism of solvation force 
 

 We consider the immersed colloids as rough walls. 

For confined fluid between these two separated walls 

by a distance h  perpendicular to z direction, following 

the work of Grimson and Rickayzen, [15] the grand 

potential difference is; 
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𝛽(Ω[𝜌] − Ω[𝜌0])

= 𝛽 ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑧)(𝜌(𝑧) − 𝜌0)

+ ∫𝑑𝑟𝜌(𝑧)ln (
𝜌(𝑧)

𝜌0
)

− ∫𝑑𝑟 (𝜌(𝑧) − 𝜌0)

−
1

2
∫𝑑𝑟𝑑𝑟′[(𝜌(𝑧) − 𝜌0)] 𝑐(𝑟

− 𝑟′)[𝜌(𝑧′) − 𝜌0],                      (1) 

 

where    z ,
 

0   and    extV z are the 

inhomogeneous one particle density, the homogeneous 

one particle density, and the external potential 

respectively. Also    1 Bk T   and   c r r  are 

inverse temperature and direct correlation function. 

The pressure   P h  that acts upon planar surfaces is 

defined by [15] 

 

𝛽𝑃(ℎ) = −
𝜕(∆Ω)

𝜕ℎ
,                                                          (2) 

      

where h is the distance of two colloids.  Hence, for 

studying the interaction of two colloids, we need the 

pressure which arises from the fluid outside the 

colloids. This pressure will be the same as for two 

colloids separated by an infinite distance. Thus the 

total force per unit area which acts to separate the 

colloids will be  

 

          f h P h P    .                                            (3)
 

With this definition, positive    f h corresponds 

to a repulsive interaction and negative    f h

corresponds to an attractive interaction. Stable 

equilibrium separations, therefore, are those at 

which    f h passes through zero with a negative 

spatial gradient.  

 When minimizing Eq. (1), using the Hyper 

Netted-Chain (HNC) approximation [35, 43], and 

differentiating Eq. (1) with respect to the distance 

h  in a confined liquid, the solvation force can be 

obtained as follows [15]:  

 
   h

f h
 



 
   ,                                         (4) 

where    h  is one particle density at the  position of 

colloids. By using the Percus-Yevick approximation of 

density profile, the solvation force is given by: 

 
   

2 2

02

h
f h

 



 
                                          (5) 

 Equations (4) and (5) are called non-linear and linear 

solvation forces in the literature [15, 41]. 

 

3 Calculation of solvation force in 

ellipsoidal molecular fluid 
 

 In real confined ellipsoid fluids, particles can 

penetrate into the walls, so it can be a soft wall model 

[19, 22, 23].  For the ellipsoidal molecular liquid as a 

solvent, the particle-wall interaction has been modeled 

using RSP and RSUP interactions, where the particles- 

surface interaction is represented by an ellipsoid, a 

reduced length,  sk , located at the center of the 

particle.  sk is the determined degree of substrate 

penetrability [22]. These potentials are convenient 

interactions for the study of substrate effects on the 

alignment of liquid crystal molecules. The degree of 

surface penetrability is increased by decreasing  sk . 

The reduced length,
 

 sk varies between the limits

 0 :  k . The elongation  k is the ratio of the length 2a  

and the breath 2b  of particles,   2 2k a b . 2b, the 

length of the minor axis of the molecules, is assumed 

to be unit length. As Fig 1 and Refs. [22, 23] show, the 

molecule- wall interaction potential is written as  

 
 
 

,0                   
  ,

                       , 

i W

i

i W

s

s

k

k

IF z z
V z

IF z z




















  
 

     (6)                               

 

where iz , is position of the wall, W  is the normal 

distance between center of the reduced ellipsoid and 
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sphere in planar substrate or surface walls. The 

coordinates  ,  z   
refer to the position and 

orientation of the molecules. For RSP and RSUP 

interactions, the contact distances are given by [23]:

  
1 2

2

0

1
1 cos

2W

HGO Sphere

s    


  
   

  ,     (7)                      

and 

 
1 2

2

0

1 sin 1

1 2W

sHGO Surface

s

 
 




  
       

,        (8)                                              
 

where    2 21 1s s sk k     is anisotropy of the 

reduced ellipsoids. These contact functions have 

been used as the basis for the particle-substrate 

interactions. In RSP, the surface, as viewed by any 

particle, was taken to be represented by a sphere 

located in the surface plane but with the same x- 

and y-coordinates as those of the particles in ref 

[23]. With RSUP, each HE particle effectively 

interacts with a planar continuum rather than a 

single sphere [23]. 

 The interaction between two ellipsoidal particles by 

means of the HGO potential is given by [40] 

 
 

 

ˆ ˆ                    , ,
ˆ ˆ, ,

ˆ ˆ0                      , ,

ij ij i j

ij i j

ij ij i j

IF r r
V r

IF r r

  
 

  

 
 

 (9)                                              

 

where  ˆ ,i i i   describes the orientation of the 

major axis of particle i and 12 12 12r̂ r r is a unit vector 

along the line connecting the centers of the two 

particles, and  ˆ ˆ, ,ij i jr   is given by [35] 

 

𝜎(𝑟12, 𝜔1, 𝜔2)

= 2𝑏

[
 
 
 
 
 
 

−

1 − 𝜒[(𝑟̂12 ∙ 𝜔̂1)
2 + (𝑟̂12 ∙ 𝜔̂2)

2]

1 − 𝜒2(𝜔̂1 ∙ 𝜔̂2)

2𝜒2(𝑟̂12 ∙ 𝜔̂1)(𝑟̂12 ∙ 𝜔̂2)(𝜔̂1 ∙ 𝜔̂2)

1 − 𝜒2(𝜔̂1 ∙ 𝜔̂2)

+
𝜆[(𝑟̂12 ∙ 𝜔̂1)

2 + (𝑟̂12 ∙ 𝜔̂2)
2]2

1 − 𝜒2(𝜔̂1 ∙ 𝜔̂2) ]
 
 
 
 
 
 
−1/2

,     (10) 

 

Where   is anisotropy of the molecule versus k : 

𝜒  =
𝑘2 + 1

𝑘2 − 1
,                                                                  (11) 

                                                                                  
 

and λ is obtained by 

 

2

2

4
λ 1 χ

b

a b
  


.                                              (12) 

 Equation (10) predicts the exact contact distance of 

HE molecules and Eq. (13) of Ref. [39] is the 

approximate contact distance of HGO molecules.  

From references [36, 37] each molecule can be aligned 

in 
2N 2m different directions,  ˆ ,       

where 

0,1, 1 m    ,  
2 1

cos 1   ,  
m







             (13)                            

 and  

     ,       0,1, 2 1m
m




       .                   (14)                                    

These allowed directions are uniformly distributed 

over the surface of a sphere, so equal weighting can be 

assigned to them. Using the EROM model [37] for 

molecular liquids, the grand potential, Eq. (1), changes 

to 

 

𝛽Ω[𝜌𝛼𝛽(𝑧)]

𝐴

= ∑∫ 𝑑𝑧𝜌𝛼𝛽(𝑧) [𝑙𝑛 (
𝑁𝜌𝛼𝛽(𝑧)

𝜌𝐵
) − 1]

ℎ𝛼 2⁄

−ℎ𝛼 2⁄

+ 𝛽 ∑∫ 𝑑𝑧𝜌𝛼𝛽(𝑧)𝑉𝑒(𝑧, 𝜔𝛼𝛽)
ℎ𝛼 2⁄

−ℎ𝛼 2⁄
𝛼𝛽

−
1

2
∑∑∫ 𝑑𝑧1

ℎ𝛼 2⁄

−ℎ𝛼 2⁄
𝛾𝛿𝛼𝛽

∫ 𝑑𝑧2𝐶𝛼𝛽𝛾𝛿

ℎ𝛼 2⁄

−ℎ𝛼 2⁄

(𝑧1 − 𝑧2) 

× (𝜌𝛼𝛽(𝑧1) −
𝜌𝐵

𝑁
)(𝜌𝛼𝛽(𝑧1) −

𝜌𝐵

𝑁
),                         (15) 

where A is the area of the walls and 

 

𝐶𝛼𝛽𝛾𝛿(𝑧1 − 𝑧2)

=
1

𝐴
∫𝑑𝑥1 𝑑𝑥2𝑑𝑦1𝑑𝑦2𝐶(𝑟1, 𝜔̂1, 𝑟2, 𝜔̂2, 𝜌𝐵),              (16) 

 

where 𝐶(𝑟1, 𝜔̂1, 𝑟2, 𝜔̂2, 𝜌𝐵) is the DCF of a 

homogeneous fluid.  
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 Minimizing Eq. (15) with respect to the density with 

no external potential other than the hard ellipsoid- 

wall, gives a coupled integral equation [36,37]:  

𝜌𝛼0(𝑧) =
𝜌𝐵

𝑁
exp [∑ ∫ 𝑑𝑧1 (𝜌𝛾0(𝑧1)

ℎ𝛼 2⁄

−ℎ𝛼 2⁄

𝑚−1

𝛾=0

−
𝜌𝐵

𝑁
) ∑ 𝑐𝛼0𝛾𝛿(𝑧1 − 𝑧)

2𝑚−1

𝛿=0

],          (17) 

 

Where 0  is the number density of molecules for any 

given value of  and  where 

/ 2 / 2 Wh h   .                                         (18) 

For calculating  0 1C z z    of hard ellipsoids, we 

use the proposed DCF of Refs [38, 44] as follows 

 

𝐶(𝑟12, 𝜔̂1, 𝜔̂2) = 𝐶𝑃𝑌−𝑅𝑜𝑡ℎ (
|𝑟1 − 𝑟2|

𝜎(𝑟12, 𝜔̂1, 𝜔̂2)
) [1

+ 𝛼′𝑃2(𝜔̂1 ∙ 𝜔̂2)],                            (19) 

 

where   is a parameter and  2 1 2
ˆ ˆ,P    is the  

second Legendre polynomial. 

 
1 2

12 1 2
ˆ ˆ, ,

PY Roth

r r
C

r  


 
  
 

 was introduced in Ref. 

[38]. The total needed density for calculation of 

solvation force is given:  

   
1

0

0

2
m

tot z m z



 




                                            (20)               

In our calculations, we choose 3.0k   as it was 

used in the simulations of refs [22, 23]. For the 

most commonly used elongation of 3.0k   HGO 

fluid, the transition occurs for 0.30   with 

slight system size dependence [23]. Hence, we 

chose 0.24B   and 0.32  as the bulk isotropic 

and nematic densities of confined HE liquid, 

respectively. 

 We solve integral Eq. (17) for N = 512 by using 

an iterative method and use Eq. (20) for the total 

one particle densities. As mentioned in the 

literature [18, 22, 33, 36, 39], the density profiles, 

 tot z , provide information about the layering in 

the confined fluid through the location number 

and height of its peaks. The tendency of confined 

liquids to orient in a particular direction when in 

contact with the container walls is called the 

anchoring phenomenon. The anchoring induced 

by an interface with interactions, is known as 

homeotropic, tilt or planar. In homeotropic and 

planar arrangements, the particles are 

perpendicular and parallel to the surfaces 

respectively [18, 22]. Between the two 

arrangements, lies the possibility of substrate-

induced tilt. As mentioned in Refs. [33, 36, 39] 

and confirmed in the present calculations, the 

cases, 0.0sk   and 3.0sk  , result homeotropic, 

tilt or planar arrangements. For the limited case, 

0.0sk  , the number density profiles for HE 

confined fluid with  > 0.0h  up to 6 times of 

molecular elongation, are calculated. For the case 

0.0sk   of RSP and RSUP, in region 0.3h  , 

there is one monolayer between the two separated 

walls. For the two cases, in region < 0.3h , 

  0.0h  . Also for case, 3.0sk  , 1.0h   up 

to six times of molecular elongation, density 

profiles are calculated. The case RSUP with 

3.0sk  , corresponds to the hard particle-hard 

wall interaction. Hence, for <1.0h  the layer is 

squeezed out,   0.0h   and from Eq. (4), 

   f h    is attractive. For 1.0 < <1.3h , 

there is one monolayer between the two separated 

walls. For all h  values, the case RSP with 

3.0sk  , corresponds to tilt anchoring. Hence, for 

<1.4h  the layer is squeezed out,   0.0h   

and    f h    is attractive. For 

1.4 < <1.78h , there is one monolayer between 

the two separated walls. All mentioned results in 

layering of molecules are confirmed in solvation 

force profiles, see Figs 2- 5. 

 From Eq. (4), by using the calculated results of 

number densities,  h , the solvation force with RSP 

and RSUP interactions are obtained. The solvation 

forces for HE confined model with RSP and RSUP 
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interactions are shown in Figs 2 and 3 for limited 

cases, 0.0sk  , 3.0sk   and the constant bulk 

densities. The effects of two contact functions in 

isotropic and nematic bulk densities are shown. 

 

 
 

Figure 2. Solvation force for confined systems of HE particles as a 

function of 2h h b   for 3.0k  , (a) 0.24B  and (b) 

0.32B  using the RSP interaction. The solid and doted curves 

are 3.0sk   and 0.0sk   (our calculations), respectively. 

The effect of RSP interaction variation for solvation force of 

isotropic and nematic HE fluid are shown. 

 

 
 

Figure 3. Solvation force for confined systems of HE particles as a 

function of h
 for 3.0k   and 3.0sk  , (a) 0.24B 

and (b) 0.32B  using RSP and RSUP interactions. The solid 

and dashed curves are RSP and RSUP (our calculations), 

respectively. For RSP and RSUP interactions the effect of bulk 

density variation for solvation force of planar and tilted 

arrangements at 3.0sk   are shown. 

 

 In Figs 4 and 5 the effects of number densities on 

solvation forces due to different interactions with 

0.0sk   and 3.0sk   are shown.  
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Figure 4. Solvation force for confined systems of HE particles as a 

function of h
 for 3.0k   and 0.0sk  , using RSP and 

RSUP interactions in different bulk densities. The solvation forces 

for these two models are shown for 0.0sk   and different bulk 

densities. 

 

 
 

Figure 5. Solvation force for confined systems of HE particles as a 

function of h
 for 3.0k  , 3.0sk  , 0.32B   using 

RSUP and HNW potentials. The solid, and dashed curves are 

RSUP (our calculations) and HNW given in [21], respectively. 

 

 We could not find the experimental or theoretical data 

for solvation force of hard ellipsoidal molecular fluids 

with these two interactions. Hence, in Fig 6 the 

solvation force profile in 
sk k  as a case of RSUP 

interaction, is compared with the results of HNW 

interaction of Ref. [21]. The results are in qualitative 

agreement. 

 

 
Figure 6. Solvation force for confined systems of HE particles as a 

function of h
 for 3.0k  , 3.0sk  , 0.32B   using 

RSUP and HNW potentials. The solid, and dashed curves are 

RSUP (our calculations) and HNW given in [21], respectively. 

 

4 Results and discussion   

 The solvation force of confined HE fluid between 

colloids has been studied using the density 

functional theory presented in Section 3. The RSP 

and RSUP interactions between colloids and 

ellipsoid molecules are considered. In our 

calculations we have used the EROM model and 

nonlinear Grimson– Rickayzen formalism of the 

solvation force. In all solvation force figures, the 

forces are oscillatory functions. These decaying 

oscillatory forces variy between attraction and 

repulsion forces.  

 As the bulk density increases, heights and depth 

of oscillations are increased for all reduced 

molecule lengths. Also as the distance of colloids 

increases, oscillations decay away from each 

colloid. In particular, the figures show oscillatory 

behavior with periodicity correlating with size of 

the molecules and magnitude, which decays 

within a few molecular layers. In the cases 
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0.0sk   and sk k  of RSUP the peak to peak 

separation of force oscillations corresponds to 

k  and 2b  respectively. These results agree 

with homeotropic and planar arrangements [23] of 

a confined HE fluid with RSUP interaction. The 

maximas (repulsive parts) correspond to the well-

formed layer configurations while the minimas 

(attractive parts) occur when wall separation is not 

enough for well-formed layering of HE fluids. 

Stable separations correspond to the h values 

where  f h  switches from positive (repulsive) to 

negative (attractive). In the two interactions, for 

elongation, 3.0k  , the cases for which 0.0sk   

correspond to the homeotropic arrangement [23]. 

Thus solvation force oscillations of RSP and 

RSUP in the case, 0.0sk  , corresponds to 

homeotropic arrangement. Conversely in the case 

sk k  for RSUP, planar alignment develops, so 

the number of oscillations increases and their 

spatial period decreases. 

 In Figs 2(a) and 2(b) the effect of RSP interaction 

variation for solvation force of isotropic and nematic 

HE fluid are shown, respectively. Also in Figs 3(a) and 

3(b) the RSUP interaction variation are shown. For 

RSP and RSUP cases, the first maximum shifts away 

from the walls as the anchoring changes from 

homeotropic ( 0.0sk  ) to tilt or planar ( sk k ). The 

observed peak-peak separation distance of RSP at 

sk k
 
is not appropriate for either homeotropic or 

planar anchoring states. The peak-peak separations 

correspond to tilted arrangement of confined HE 

molecules. In planar and homeotropic arrangements, 

the main peaks are located at distances 2b  and 
0.2~ 0.3  from the walls and correspond to the first 

molecules layering. The amplitude of maxima to 

adjacent minima in bulk nematic is longer than for the 

isotropic case. For the planar case, oscillations in 

 f h of period ~1.1 in the nematic phase indicate 

stratification which corresponds to integer numbers of 

planar layers in the h interval. For the homogeneous 

case of RSUP, the oscillations are of longer period and 

weaker amplitude, indicating weaker orientational 

coupling in this geometry. 

 In Figs 4(a) and 4(b) the effect of bulk density 

variation for solvation force of planar and tilted 

arrangements at 3.0sk   are shown. The increase 

in bulk density from isotropic to nematic, 

increases the height of maxima and depth of 

minima in planar and tilted arrangements. The 

heights and depths of oscillations of RSUP in 

isotropic and nematic densities are higher than for 

the RSP case. Also peak to peak separations of 

force oscillations increase from RSUP to RSP. 

This increment corresponds to tilted alinement of 

RSP.  

 The amplitude of oscillations tends to zero in 

4.0h   and 7.0h   for planar isotropic and 

nematic cases of RSUP, respectively. For tilted 

isotropic and nematic cases of RSP, zero 

amplitude occurs in 8.0h   and 10.0h  , 

respectively.  

 The solvation forces for these two models are 

shown in Fig 5 for 0.0sk   and different bulk 

densities. For homeotropically isotropic and 

nematic cases of the two interactions, the 

amplitudes tend to zero in 3h k  and 4h k , 

respectively. These behaviors correspond to 

layering and orientational ordering of confined 

HE molecules. Peaks of isotropic cases shifted 

away from the wall and broadened. 

 To some extent, it is reasonable to compare our results 

with the results of Ref. [21], because simulation or 

experimental results of solvation force for hard 

ellipsoid fluids with RSP or RSUP interaction were not 

available. For the case 3.0k  , 3.0sk  ,
 
as a RSUP 

interaction, our results are compared with results of 

confined HGO fluids with HNW interaction in Fig 6. 

The main reasons for the discrepancy in Fig 6 may be 

due to molecule-surface interaction strength difference 

and molecule- molecule interaction difference. 
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5 Conclusions  

 The conclusions are summarized as follows: 

(a) In real confined ellipsoid fluids, particles can 

absorb into the walls.
 

 sk is determined as the 

degree of substrate penetrability [22, 23]. The 

RSP and RSUP models are alternative interactions 

for studying these confined fluids.   

(b) In homeotropically anchored cases (𝑘𝑠 = 0.0), 

the formation of layering requires more space than 

in planar and tilt anchored cases. The distance h  

between the first and second maxima or minima in 

solvation force corresponds roughly to the large 

`diameter’ of a HE molecule. 

(c) In RSP tilt anchored cases ( sk k ), for 

isotropic and nematic bulk densities, the formation 

of layering requires more space than in RSUP 

planar anchored cases. The distance h  between 

two consecutive maxima or minima in solvation 

force of RSP is 1.4 < ∆ℎ < 𝑘. 

 (d) In RSUP nematic planar cases, the periods of 

force oscillations close to the walls are 

approximately smaller than those farther from the 

walls. This effect depends on influence of the 

layers near the walls on adjacent molecules in 

these cases. 

(e) The results show that factors such as particle- 

wall interactions and bulk number density of HE 

fluids can have significant effect on solvation 

forces of the confined fluids. 

(f) The present calculations showed that the 

extended restricted orientational model of HNC 

density functional theory, by using Eq. (10) 

instead of Eq. (13) of Ref. [39], can be usefully 

applied to confined liquids comprised of HE 

particles with RSP and RSUP particle-wall 

potentials. Finally, EROM could qualitatively 

predict the solvation forces corresponding to the 

behavior of homeotropic, tilt, and planar 

arrangements of the HE confined liquid.      

 We can calculate the solvation force of confined Gay- 

Berne fluids with realistic particle-substrate 

interactions; using this theoretical model and 

simulation methods. Also we can calculate the 

solvation force of confined HE using simulation 

methods. We will do these in future works. 
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