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The realization that entanglement can affect macroscopic properties of solid-state systems 

is a challenge in physics. Theoretical physicists often consider entanglement between the 

nearest neighbor spins and try to find its characteristics in terms of macroscopic 

thermodynamic observables. Here, we focus on the entanglement between the 2nd, 3rd, 

and 4th neighbor spins in an exactly solvable model. We show that there is a much clearer 

fingerprint of long-distance entanglement on the thermodynamic properties like specific 

heat, magnetocaloric effect, and magnetic susceptibility. 
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1 Introduction 
 

 People constantly chase to detect the predicted 

theoretical phenomena experimentaly. Hence, after 

resolving the primary challenge created about 

entanglement[1] by Bell inequalities[2], growing efforts 

were started for this goal. Although entanglement 

presently is not a novel phenomenon, it is still widely 

shrouded in mystery in the area of physics. Particularly, 

in three last decades, many people found that 

entanglement is ubiquitous in nature and it can exist in 

systems of any sizes and under different situations. It is a 

very efficient implement in teleportation, computation, 

and information processing tasks[3, 4, 5, 6, 7]. It still 

seems there are small signs of the operational research 

although extensive works have been done up to now. As 

a matter of fact, it certainly needs a prolonged route 

ahead. In order to achieve the technical levels, one 

should be able to prepare the entangled states or detect 

the naturally available entanglement in some 

compounds. The first experimental preparation report of 

entangled states was published by Aspect et al[8]. They 

could entangle a pair of photons. Later publications 

found numerous interesting applications of this 

phenomenon[9, 10, 11, 12]. Such developments also laid 

on condensed matter physics as well as quantum optics. 

Since particles are more convenient than photons to 

exchange information[4] and on the other hand, they are 

preferable for robust teleportation across finite 

distances[13, 14, 15], solids with low-dimensional 

structure by means of magnetic interaction between 

spins can be considered as channels for transferring 

information without the requirement for any external 

control[7]. The trace of entanglement has been 

abundantly verified in different ingredients of such 

magnetic solids in the microscopic world[16, 17, 18, 19]. 

Although there is not any straightforward approach to 

measure the entanglement value experimentally, but 

surprisingly, it has been demonstrated that it affects 

macroscopic properties of solids. In other words, the 

presence of entanglement can make a difference in the 

behaviour of macroscopic quantities[20]. Consequently, 

one can easily conclude that entanglement as a 

microscopic feature may reveal itself in the macroscopic 

world. 

 Some thermodynamic quantities such as magnetic 

susceptibility, specific heat or internal energy can 

distinguish an entangled state from the separable one, i. 

e., they are witnesses for entanglement. Investigating an 

entanglement witness for different low-dimensional 

magnets is of the central interest for both theoretical[21, 

22, 23] and experimental[24, 25, 26] researches. Ghosh 

et al[24] rendered a first experimental data on the 

susceptibility, albeit at very low temperature (few 

millikelvin). In the next steps, other researches were 

done on different compounds in order to improve the 

temperature range[27, 28, 29]. For instance, based on 

susceptibility data for �����	
 presented by Vertesi and 

Bene[29], there is a critical temperature at the room 

temperature range where the entanglement disappears. In 

most compounds studied in these fields, the mentioned 

thermodynamic quantities are able to reveal the 

existence of entanglement between the nearest neighbor 

spins[24, 28, 29]. 

 Nevertheless, it is an open question whether or not there 

are macroscopic quantities that can be as the 

entanglement witness for non-nearest neighbor spins. 

Theoretically, it was shown that magnetic susceptibility, 

when measured along three orthogonal spatial directions, 

can reveal entanglement between individual spins in a 

solid[30]. In a recent published paper[7], Sahling et al 

have provided an experimental realization of long-

distance entanglement on ���
���
	
� through the 

magnetization and specific heat measurements. 

Compounds such as this dimerized chain may serve to 

transmit quantum information. 

 The main purpose of the present paper is to show 

whether one can find a trace of the non-nearest neighbor 

entanglement by studying the behaviour of some 

thermodynamic functions. In fact, pairwise concurrence 

is calculated from one-point and two-point correlation 

functions. As a result, it is expected that quantum phase 

transitions are also affected by long-distance pairwise 

concurrence. Here, we study what possible links there 

may be between them and what useful information one 

can extract from the behaviour of thermodynamic 

functions in more detail. We consider a one-dimensional 

(1D) spin-1/2 isotropic XY model. Solids with this type 

of structure have been studied both theoretically and 
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experimentally [13, 31, 32, 33, 34] in many aspects.  

Since the exact energy spectrum of an infinite spin-1/2 

XY chain can be obtained, one would expect a fine 

agreement between experience and theory. It has been 

already suggested that the internal energy and 

magnetization can be good candidates for detecting 

quantum entanglement in this model[35, 36]. Here, we 

show that the magnetic susceptibility, specific heat, and 

magnetocaloric effect as thermodynamic response 

functions can detect entanglement between the 2nd, 3rd, 

and 4th neighbor spins. Indeed, using the fermionization 

technique, we provide exact analytical expressions for 

entanglement between the 1st, 2nd, 3rd, and 4th 

neighbor spins. We show the efficiency of the 

thermodynamic functions in the detection of 

entanglement as the neighborhood of the spin pairs goes 

farther than the next nearest neighbor. 

 The paper is organized as follows. In the forthcoming 

section having introduced the model, we depict its 

Hamiltonian in spinless fermion representation. Two-

point entanglement is briefly described in section 3 by 

introducing the concurrence and in the following it is 

referred to as analytical results of the concurrence 

between the 2nd, 3rd, and 4th neighbor spins. We 

present and discuss the result of our study in section 4. 

Investigating of three thermodynamic response functions 

allows us to have an analysis between their behaviour 

and the existence of the quantum correlations . Finally, 

in section 5, we will conclude and summarize our 

results. 

2 Model 
 

 The Hamiltonian of the 1D spin-1/2 isotropic XY model 

in the presence of a magnetic field is given by  

� = � ∑ 	���� ��������� + �������� � − ℎ ∑ 	���� ���,													(1)	  

 where � > 0 denotes the antiferromagnetic exchange 

coupling constant and  is the uniform magnetic field. 

This model is exactly solvable [37], and the energy 

spectrum has been derived by the fermionization 

technique[38]. This approach provides a straightforward 

way to obtain the exact expressions for thermodynamic 

quantities. By using the Jordan-Wigner transformation  

��� = ��& �'() ∑ 	*+, -*.-*�,																																																					(2)                 

��0 = �'0() ∑ 	*+, -*.-*� �� ,																																																					(3) 

��� = ��&�� − �� ,																																																																					(4) 

 and then applying the Fourier transformation, �� =�
√� ∑ 	4 '0(4��4 , the Hamiltonian can be diagonalized as 

follows 

�5 = ∑ 	4 6(7)�4&�4,																																																												(5) 

 where �4& and �4 are the spinless fermionic creation and 

annihilation operators in the momentum space, 

respectively. The energy spectrum depending on the 

structural properties of the chain and the environment 

interaction is given as  

6(7) = �cos(7) − ℎ.																																																											(6) 

3 Two-point entanglement 
 

 The pairwise concurrence, as a criteria of entanglement, 

is the best way to check the existence of long-range 

entanglement. If we adopt the Wooter’s 

concurrence[39], we will have:  

�>?(,(�@A = maxE0, FG� − FG� − FG� − FG
H,									(7) 

 where the G(s are the real and non-negative eigenvalue 

in decreasing order of the non-Hermition matrix J = ?(,(�@(K� ⊗ K�)?(,(�@∗ (K� ⊗ K�). K� is the Pauli 

matrix in M direction, ?(,(�@ is the two-particle reduced 

density matrix between the ith spin and its neighbor 

placed in the distance m as 

?(,(�@ =
N
OOP

Q(,(�@� 0 0 00 R(,(�@� S(,(�@∗ 00 S(,(�@ R(,(�@0 00 0 0 Q(,(�@0
T
UUV,											(8) 

 and finally ?(,(�@∗  denotes the complex conjugation of ?(,(�@. The concurrence in terms of ?(,(�@ elements is 

obtained as  
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�>?(,(�@A = max X0,2 YZS(,(�@Z − [Q(,(�@� Q(,(�@0 \] . (9) 

 The reduced density matrix elements for the 1st, 2nd, 

3rd, and 4th neighbor spins can be calculated as[40]  

 S(,(�� = _�, 
 Q(,(��� = _̀� − _��, 
 Q(,(��0 = 1 − 2_̀ + _̀� − _��,												(10)          

 

 S(,(�� = _� − 2_̀ _� + 2_��, 
 Q(,(��� = _̀� − _��, 
 Q(,(��0 = 1 − 2_̀ + _̀� − _��,												(11) 

 

 S(,(�� = 4(_�� − 2_̀ _�_� + _��_� + 

 _̀�_� − _��_� + _�_� − _̀ _�) + _�, 
 Q(,(��� = _̀� − _��, 
 Q(,(��0 = 1 − 2_̀ + _̀� − _��,           (12) 

 

 S(,(�
 = 8(_�
 − 3_̀ _��_� + 2_��_�� + 

 2_̀�_�_� + _̀�_�� − _�
 − 2_̀ _�_�_� + 

 2_�_��_� − 2_��_� + _��_�� − _̀ _�_�� − 

 _̀�_
 + 2_̀ _��_
 − 2_��_�_
 + 

 _̀ _��_
) + 4(3_��_� − 2_̀ _�� − 

 4_̀ _�_� + 2_�_�_� + 3_̀�_
 − 

2_��_
 + _�_�� − _��_
) + 

             2(2_�_� − 3_̀ _
 + _��) + _
, 
 Q(,(�
� = _̀� − _
�, 
 Q(,(�
0 = 1 − 2_̀ + _̀� − _
�.												(13) 

 It should be noted that the function _a is defined for a 

non-negative integer number b as  

_a = ��) c 	)0) '(4a_(7)d7.																																																	(14) 

 _(7) = ���e�f(gh(4)) is the Fermi distribution function, 

where i = 1/7kl and the Boltzmann constant is taken 

as 7k = 1. The study of zero temperature entanglement 

of the spin-1/2 XX chain shows that for each neighbor 

pair of spins, there is an entanglement field, ℎm[40], 

where the spin pair will be entangled after that. This 

entanglement field splits the Luttinger liquid (LL) phase 

into the separable and entangled regions. Also, it was 

reported as a function of distance m and the quantum 

critical field as: ℎm = (@0�)n
(@0�)n�� ℎo[40]. However, the 

entangled region fades away when the temperature rises. 

Such behaviour as a genuine quantum feature is 

generally not seen beyond molecular scales. As the size 

of the system exceeds the Avogadro constant, the 

decoherence interactions deteriorate the detection of 

quantum effects, and finally, it turns into classical 

phenomena. Although their own quantumness properties 

are not detectable, the influences are seen in some 

macroscopic properties known as quantum mechanical 

observables. 

4 Results 
 

 Up to now, many works have been done to show the 

role of quantum correlations in the macroscopic 

quantities, particularly susceptibility. Many of them use 

the entanglement witness based on the definition of an 

observable that has a negative value for an entangled 

state[21, 41]. We apply a different approach to this 

purpose. Here, we are going to show that the behaviour 

of some thermodynamic functions can be related to the 

entanglement between long-distance pair spins.  

 The magnetic susceptibility is selected as the first 

candidate. Experimental results completely agree with 

the quantum susceptibility that is different from what is 

predicted by using classical correlations. It is extracted 

from the sum over all microscopic two-point correlation 

functions[42]:  
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p = i>∑ 	�(,��� < �(���� > −< ∑ 	�(,��� �(� >�A.													(15) (15) 

 As a result, the longitudinal magnetic susceptibility is 

obtained as  

p = i8r s 	)
0)

d7
cosh� i6(7)2

.																																																(16) 

 Figure 1 shows the magnetic field dependence of the 

susceptibility and the concurrence between the 1st, 2nd, 

3rd, and 4th neighbor spins at a certain temperature, l = 0.01. Here, we recall that the quantum phase 

transition occurs at ℎo = � and the entanglement field is 

ℎm = (@0�)n
(@0�)n�� ℎo. In the region ℎ < ℎo, the ground state 

of the system is in the LL phase. At a quite low 

temperature, increasing the magnetic field gives rise to a 

gradual growth in the susceptibility at the first half of the 

LL phase. At the second half of the LL phase, by more 

increasing the magnetic field, the susceptibility increases 

rapidly and a sharp peak emerges at the near ℎo which is 

an indication of the quantum critical point. It is believed 

that the mentioned peak is due to the fact that the two-

point correlations, < �(��(�@� >, will be long range in the 

vicinity of the quantum critical point and the correlation 

length becomes infinity exactly at ℎ = ℎo. One should 

note that the nonzero value of the correlation function 

does not necessarily imply the existence of 

entanglement. The entanglement contains a higher 

degree of correlations. To reveal it, they need to be 

combined in a specific way, in addition to the existence 

of the sufficiently strong two-point correlations, they 

need to be combined in a specific way. As well as two-

point correlations, this kind of quantum correlations 

detected by concurrence has a rising behaviour in the 

second half of the LL region. As is seen, quantum 

correlations between the 2nd, 3rd, and 4th neighbor 

spins, in spite of the 1st neighbor spins, do not exist in 

the first half of the LL phase, which means that the 

quantum correlations cannot be long range in this region. 

By more increasing the magnetic field, quantum 

correlations between further spin pairs will be created 

and the amount of them increases rapidly in the second 

half of the LL region and shows a sharp peak similar to 

the susceptibility. The reason for this similarity seems 

simple. As we mentioned before, magnetic susceptibility 

includes some correlation between spins 

 

Fig.  1: (color online). The magnetic field dependence of the 

magnetic susceptibility (top panel) and the concurrence (bottom 

panels) between the 1st, 2nd, 3th, and 4th pair of spins for a chain 

with exchange coupling � = 1 at the temperature l = 0.01. These 

diagrams illustrate the roughly similar behavior for magnetic 

susceptibility and the concurrence between the 2nd, 3rd, and 4th 

spins after the entanglement field ℎm .  

 The second bulk quantity that we are to inspect is the 

specific heat corresponded as variance of the 

Hamiltonian  

�u = i�7k(< �� > −< � >�),																																			(17) 

 that we can reach to the following relation in the 

momentum space:  

�u = i�7k8r s 	)
0) ( 6(7)

cosh i6(7)2
)�d7.																																	(18) 

 The specific heat in terms of the magnetic field has two 

local peaks on both sides of the quantum critical point as 
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shown in Fig. 2. It was already demonstrated that the 

position of the valley between two peaks is indeed the 

quantum critical point[44, 45]. At the considered 

temperature, l = 0.01, energy levels which are very 

close to the Fermi energy will be only excited. The 

occupation probability of these levels rises by increasing 

the magnetic field. As a result, two peaks are seen in the 

vicinity of the quantum critical field. On the other hand, 

the specific heat is the temperature derivative of the all 

two-point correlation functions between the 1st neighbor 

spins, < �(v�(��v > (w = x, M, y). Thus, the increasing 

behavior of the specific heat in the second half of the LL 

region can be related to the increase of the temperature 

derivative of the correlations between the 1st neighbor 

spins. It is surprising that the peak of the specific heat in 

the second half of the LL region has very good self-

identity on the cusp of the concurrence between the 2nd, 

3rd, and 4th neighbor spins. According to Fig. 2, it can 

be argued that the increasing trend of the specific heat in 

the LL phase and appearance of the peak is due to the 

field-induced quantum correlations between the long-

distance pair of spins. 

 

Fig.  2: (color online). The specific heat and the concurrence between 

1st, 2nd, 3th, and 4th spin pairs are plotted against applied magnetic 

field for a chain with exchange coupling � = 1 at temperature l = 0.01 in the top and two bottom panels respectively. The figure 

estimates analogous trends for 2nd, 3th, and 4th concurrence and 

specific heat in the field range ℎm ≤ ℎ ≤ ℎo .  

 Finally, we focus on the magnetocaloric effect which is 

proportional to temperature derivative of the 

magnetization as: 

Γ = − l�u Y∂}∂l \~ .																																																											(19) 

 

 Therefore, it can be derived from the following relation:  

Γ = i8r�u s 	)
0)

6(7)
cosh� i6(7)2

d7.																																						(20) 
 In fact, a temperature change of magnetic systems under 

the adiabatic variation of an external magnetic field is 

known as the magnetocaloric effect. This phenomenon 

in quantum spin systems has recently attracted scientists’ 

attention[46]. The results for the integrated 

magnetocaloric and concurrence as a function of the 

magnetic field at the temperature l = 0.01 have been 

displayed in Fig. 3. More generally, the magnetocaloric 

effect is particularly large in the vicinity of the quantum 

critical point. It is obvious that the minimum value of the 

magnetocaloric expresses the quantum critical point[43]. 

But, what is caused maximizing the magnetocaloric is 

referred to as quantum correlations at the microscopic 

world. At first, in the absence of any entanglement 

between the 2nd, 3rd, and 4th neighbor spins, the 

magnetocaloric effect is zero. At the onset of the second 

half of the LL region, the rate of growth increases 

suddenly and both concurrence between the long-

distance pair of spins and the magnetocaloric effect 

reach to their maximum simultaneously. However, the 

magnetocaloric effect plunges to its minimum while the 

concurrence drops smoothly to zero. 

 In following, we study the scaling behaviour of 

concurrence between the 2nd, 3rd, and 4th neighbor 

spins at zero temperature in the neighborhood of the 

entanglement field. One should note, though the 
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concurrence does not diverge at the entanglement field, 

but it is affected by the quantum criticality. We analyzed 

our analytical results and found that as soon as the 

magnetic field increases from ℎm, the concurrence 

between the 2nd, 3rd, and 4th neighbor spins increases 

from zero and shows a scaling behaviour as,                � ∝ (ℎ − ℎm)�, with the critical exponent � = 1.0 ±0.05 for all of them. We have to mention that all 

concurrences show scaling behavior in the vicinity of the 

quantum critical field with the critical exponent � =0.33 ± 0.01.  

 

Fig. 3: (color online). Magnetocaloric in the top panel and the 

concurrence of the 1st, 2nd, 3th, and 4th spins in the second and third 

panels versus the magnetic field for a chain with exchange coupling � = 1 at l = 0.01. In the entangled region ℎm ≤ ℎ ≤ ℎo, the 

magnetocalric adjust it’s cusp to the maximum points of the quantum 

correlations between 2nd, 3th, and 4th spins. 

5 Conclusions 
 

In conclusion, we believe our results demonstrate that 

the presence of quantum entanglement between long-

distance spin pairs may play a broad generic role in the 

macroscopic phenomena. Indeed, it is considered that an 

appropriate interpretation of the different behaviour of 

macroscopic functions observed in two halves of LL 

phase is due to the existence of quantum features in one 

of the halves. On the other hand, compounds with XY 

spin-1/2 structure can be treated as a transmitter of the 

quantum information. In fact, the 2nd, 3rd, and 4th 

neighbor spins must be entangled in eigenstates close to 

the Fermi energy. When these states contribute to the 

physical behaviour of the system, the fingerprint of the 

mentioned long-distance quantum correlations can be 

found in the low-temperature behaviour of the response 

functions.  
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