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1 Introduction

In recent years, a huge number of works have been
devoted to the investigation of the collective behavior of
quantum plasmas [1]. It has been known that extremely
dense and ultracold plasmas behave like an ideal gas,
due to the exclusion principle. However, also dilute
charged particle systems can exhibit quantum features,
provided that the dimensions of the system are small
enough. Small enough here
comparable to the de-Broglie wavelength,
Ag = h/\/m, where h is the Planck’s constant, T is
the thermodynamic temperature, m is the mass of charge
particle, and kg is the Boltzmann’s constant. For
classical regimes, the de Broglie wavelength is so small

means dimensions

that particles can be considered as point like; therefore
there is no overlapping of the wave functions and no
quantum interference. Therefore, one can expect to the
quantum mechanical effects start playing a significant
role when de-Broglie wavelength is similar to or larger
than the average interparticle distance, n~/3 , i.e., when
ni3 > 1, [2].

The three well known mathematical formulations to
investigate new aspects of dense quantum plasmas by
describe the dynamics of quantum plasmas are the
Schrodinger-Poisson model, the Wigner-Poisson model
and the quantum hydrodynamic (QHD) model. The
quantum hydrodynamic model (QHD) as well as the
Wigner-Poisson system can be used for investigating the
new aspects of dense quantum plasma [3-6]. But it is
more efficient to use the QHD model, because of its ease
use of the boundary conditions and macroscopic
variables. Mathematically, the (QHD) model generalizes
the fluid model with the inclusion of quantum statistical
pressure and quantum diffraction (also known as Bohm
potential) term. These models have been discussed in
detail in Refs. [7,8].

The vital role of quantum effects has been recognized in
different environments such as: microelectronic devices
[9], intense laser-solid density plasma experiments [10],
dense astrophysical environments [11], high-gain free
electron laser [12,13], thin metal films [14], quantum
dots, nanowires [15], carbon nanotubes [16], quantum
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diodes [17], ultracold plasmas [18] and microplasmas
[19].

The most of laboratory and astrophysical quantum
plasmas consist of electrons, positrons, and ions (e-p-i).
Thus, many researchers investigated the role of quantum
corrections on linear and nonlinear electrostatic waves in
dense e-p-i plasmas. For instance, Ali et al [20]
investigated the linear and nonlinear properties of the ion
acoustic wave in an unmagnetized electron-positron-ion
quantum plasma and found that the nonlinear waves in
this plasma model behaved so differently than that of
ordinary e-i plasma. Han et al. [21] studied the nonlinear
propagation of ion-acoustic solitary and shock waves in
a dissipative, nonplanar quantum plasma comprised of
electrons, positrons, and ions. They showed that, both
type of rarefactive and compressive of the nonlinear
waves can propagate in this plasma system.

In contrast to the ordinary plasmas, the most of the
laboratory and astrophysical plasmas usually contain
charged (negative or positive) impurities or dust
particles in addition to the usual components such as
electrons, positrons and ions; for instance, in different
environments of low  temperature laboratory,
microelectronic devices and metallic nanostructures,
coating, cometary tails,

tokamak edges,

interplanetary spaces and in the planetary ring systems.

plasma

The presence of this charged dust particles changes the
equilibrium condition and introduces different types of
new wave modes such as dust-ion acoustic (DIA) waves.
Therefore, it is important to study linear and nonlinear
waves in various configuration of laboratory and spaces
dusty plasma. It is well known that Shukla and Silin [22]
the first investigate DIA waves
theoretically in an unmagnetized collisionless dusty
plasma and then DIA waves have been observed in
laboratory [23,24]. Recently, many researchers have
discussed several aspects of linear and nonlinear wave

WEre ones to

propagation in dusty plasmas [25-31]. Dust ion acoustic
solitary wave, a kind of nonlinear waves associated with
the DIA waves, have also received a great deal of
attention in study the basic properties of localized
electrostatic perturbations in space and laboratory dusty
plasmas. Several authors have investigated theoretically
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in this subject. Rouhani et al. [32] investigated the
nonlinear propagation of compressive and rarefactive
QDIA solitary waves in four components quantum
plasma. They studied the effect of quantum diffraction
parameter (H) and dust density (n4) on the structure of
QDIA solitary waves. Emadi and Zahed 2016 [33]
studied the behavior of linear and nonlinear dust ion
acoustic (DIA) solitary wavesin an unmagnetized
quantum dusty plasma, including inertialess electrons
and positrons, ions, and mobile negative dust grains.
They employed Reductive perturbation and Sagdeev
pseudopotential methods for small and large amplitude
DIA solitary waves, respectively. They observed that the
variation on the values of the plasma parameters such as
different values of Mach number M, ion to electron
Fermi temperature ratio s, and quantum diffraction
parameter H can lead to the creation of compressive
solitary waves.

As usual, the dust charge is a function of the plasma
parameters, but as a consequence of that, the typical dust
charging time scale may be longer than the DIA time
scale, and we anticipate that the dust charge fluctuations
have no essential effect on the DIA mode, and the dust
charge can therefore be assumed to be constant. All of
the works that mentioned in above satisfy this situation
and in other words, dust charge assumed to be constant.
However, in a realistic situation in space and laboratory
devices the charge on a dust grain is not constant but
varies with space and time [34]. Ghosh et al. [35-37]
have studied nonlinear propagation of the DIA waves,
particularly solitary [35] in a dusty plasma by taking into
account the dust charge variation. Alinejad 2010 [38]
investigated the one dimensional dynamics of nonlinear
electrostatic dust ion-coustic (DIA) waves
unmagnetized dusty plasma consisting of ion fluid, non-
thermal electrons and fluctuating immobile dust particles

in an

has been made by the reductive perturbation technique.
He found that the dust charge fluctuation is a source of
dissipation, and is responsible for the formation of the
dust ion-acoustic shock waves. To the best of our
knowledge, no investigation for nonlinear DIA solitary
waves in four component quantum plasma with

consideration of dust charge variation has been made.
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On the other hand, the nonlinear wave propagation of
any plasma system depends on the velocity distribution
of the corresponding plasma species. The Maxwellian
velocity distribution is
distribution in a collisionless plasma [39-44]. But it is
often noticed that the velocity distribution of plasma

considered as the wusual

particles in space and laboratory are not exactly
Maxwellian and may be deviated from that [45,46]. In
quantum plasmas, the Fermi-Dirac statistical distribution
is usually employed rather than the widely used
Boltzman-Maxwell distribution in classical plasmas.
Therefore, one would expect a great deal of interest
effects to follow from the inclusion of the grain charge
evolution and Fermi-distribution function for quantum
particles. Following our trend on applications of the
quantum plasma, in this paper, using the QHD model,
we investigate the DIA solitary waves in an un-
magnetized collision-less four component quantum
plasma consisting of inertia-less quantum electrons and
positrons with Fermi-distribution function, classical cold
ions and stationary negative-dust-charge variation. The
rate of dust grain charge variation is determined by the
current associated with the electrons, positrons and ions
in the plasma.

Our manuscript is organized as follows: The basic set of
equations for QDIA waves are presented in Sec 2. In Sec
3, KdV equation is derived and the
perturbation method is used in its stationary solution.
The structures of compressive and rarefactive solitary
waves are investigated in Sec 4 and the Result and brief
discussion is finally presented in Sec 5.

reductive

2 Basic equations

Following the quantum hydrodynamic model, we
consider the homogeneous, collision-less, un magnetized
and dissipative dust-electron-positron-ion quantum
plasma consisting of inertia-less electrons and positrons.
The stationary negative-dust-charge is not constant and
varies with time. Since the electrons and positrons are
fermions, their equation of state is described from the
Fermi-gas model at approximately zero temperature as
P, = 2kpTejn?/3n%, where Ty = h?(3n2n))*° (2myks) i
the Fermi temperature, kB is the Boltzmann constant,
and n;, is the equilibrium number density of the jth
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species (j=e, p). The quasi-neutrality condition in the
equilibrium state can be written as e¢; + d; = 1 + p;, where
e = Neo/Mio 5 P; = Nyo/Myy, AN d; = ngoQao/enso. By using
the QHD model, the set of normalized basic equation for
DIA in the quantum plasma model are given as follow:

o,n +9 (nu) =0, (1)

ou,+ud u,=—0.0, 2)

H* | 9n,
a,(¢_nea.xne+’(78,y|: \/Z :l_o ” (3)
2 92/
—8x¢—0'npaxnp+KH—ax[ - np]=0, 4)
2 n)
p=(-d)ayn, +1-d)A-an, -n+d, 2 | (5)

do
where ay = ¢;/(1—d) =1+ (p;/(1 — d)), 0 = Trp/Tre,
The non-dimensional
quantum  diffraction parameter H is defined
as  H = hwpe/kpTr,, that wy, = (4mngge?/m,)* /2. The
number density, n; (j=e, i, p, d), of the jth species are
normalized by their equilibrium density nj, the fluid ion
the speed
¢; = (kgTre/m;)*/?, the electrostatic wave potential ¢ is
normalized by kgTr. /e, the space and time coordinates x

me =m, =m,k = Nio/Neo»

velocity u by quantum ion-acoustic

and t are normalized, respectively, by the quantum
Debye length A, = (kgTr./4me?n;)'/?,and the ion
plasma period w,}! = (4me?n;o/m;) /2.

Since the dust grains are charged by the currents of the
other particles in plasma model, the charge of dust grain
(Qd) is not constant. The charge of dust grains depends
on the number density and thermal speed of charged
particles. The dust grains can acquire the negative charge
when the number density of the electrons is larger than
that of the positrons [47]. By considering a simple
situation in which the charging current is due to the
collections of electrons and ions hitting the grain
surface, the variable dust charge Qg is obtained by

do, 1dt=Y1, , (6)

Where j represents the plasma species (i.e., j=e, p and 1)
and I; is the current associated with the species j.
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According to the well-known orbit limited motion
approach [34],

1,(7,t,4,) = 4, [vo, (g, (Fv.0d p (7

Where f; and q; are, respectively, the velocity
distribution and charge of the plasma species j and o; is
the cross section for charging collisions between the dust
and the plasma particle species j. Distribution function
for classical particles (i.e., ions) is Maxwell-Boltzmann
distribution and for quantum particles (i.e., electrons and
positrons) is Fermi-Dirac distribution as defined as:
L ©% s =i,
J eﬁ'(f 1)
: ®)

1
f,(g)“eﬁ.(gT J=ep

+1

Therefore, one can obtain the following expressions for

the plasma species currents for dust grains
2
Ie = _erdzneVTe ((ﬂe + qod )2 +%j ’ (9)
7'[2
I, = erdzanTp (,u; —2u,9, +?] ) (10)
) T
I, =4zr/neV,| 1-9, 7‘) , (11)

where 14 is the radius of the dust grain,7, =7, =T is the
thermal temperature of electrons and positrons. g, and i,

are, respectively, chemical potential of electrons and

positrons that are normalized by k,T and ¢, = % is the
Ty
electrostatic potential of dust particles and is normalized

by k,T/e.

Note that, to obtain I, and I, in relations (9) and (10), we
have assumed that the chemical potential of electrons
and positrons are large and the integral in relation (7) has
been solved in this limit.

Summation of
1,=1,(0,=0,), are zero

equilibrium currents; say,
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Lo+1,,+1,=0, (12)
by letting Q4=Qqo+qq, and I;=Ip+I;; and substituting (9-
12) into (6), one can obtain

dq,

?Zlelﬁ'] -|'I[.1 , (13)

prl

where, I;; are the perturbed currents that normalized by
I, as follows:

1,=1-1,
1,=1, [5’% +n,(Aq; + Bqd):'
Ipl = IpO |:§np _npch:|

I, = [5ni _”iqu]

with 5nj=nj—1 (14)
The coefficients A, B, C and D are the functions of
plasma parameters as follow:

2
L , (15)

2

T
(4, +¢’d)2 +?

A=

e 2(5 + 1,940

pl (16)
(/ue+¢d())+?
2
C: ﬂpq)d() =, (17)
T
ﬂ,zj_zﬂpq)do-i-?
D=LT . (18)
1- Ze
a0 T

3 Derivation of the KdV equation

Now, using the reductive perturbation methods [49] and

additional rescaling [48] &=¢"*(x—v,t), ="t

where € is a small parameter proportional to the
amplitude of the perturbation and v, is the phase velocity
normalized to the fixed acoustic speed c;, we can study
the dynamics of the propagation of small but finite
amplitude quantum dust- ion acoustic solitary waves in
plasma model. Therefore, we expand the perturbed
variables around the equilibrium value as

41

_ 2
n,=l+en, +&n,+..,

_ 2
u, =0+éeu, +&u,+...,

i (19)
o=0+ep +&°Q,+...,
G, =Eq, +E G+
with these new independent coordinates, and by

substituting the expansions (19) into the one dimensional
Egs. (1)-(5) and (13), one can find a set of equations in
the form of the lowest-order power series on ¢,

u; :ﬁ’
Yo
_ ( B d)
n,=(1-d)| e, - 15
n,="4 (20)
o
n, =a@.
Ie(lnel+1p0npl+nil
q =
a1 n
where
7]=—B[€0+CIPO+D,
1/2
- 1-d, /7 2D
0T - 1L,—1
(1—d,-){ad—(1 O-ad)}_,’_di( e0 77])0/0')

The positive or negative sign of v, corresponds to the
right or left propagation of the QDIA wave, respectively.

To next higher order in €, one can obtain the following
set of equations:

_Voafnfz + a.fu[2 =-d.n, _af (nnun ) > (22)
ag% _voafuiz = _uilag‘uil —0u, (23)
H® _,
_a§¢2 +85n€2 =—n818§n81 +KTa‘§n€1 (24)
H®

0,0, +00:n,, =—0n,0.n, + KTafnpl (25)
0.0 =(1—d)ogn, +(1-d)1-a)n,—n,+dgq,, (26)
Ly [”ez +Aqg, + Bn,gq,, + Bqdz} + 27)

Ipo [npz - Cnplqdl - quz} + [niz —Dn,q,, - quz] =0
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Eliminating the second order perturbed quantities by
using the first order relations; finally one can derive the
KdV equation as

0.0, +Pp0,¢ +RIp =0 (28)

where the coefficients of the nonlinear (P) and dispersive
(R) terms are as follows:

3 t-de, + %)),
Vo o
) 1 1
p=L i(180+L§—2C—"°2 -%H
N|n o) ov, v,
. 1,1 I} )
2—{‘(—85)+C(——”" < +L°2)+£26‘—2—i’,4§2
L7 o o Yo n ]
R:i I_H_2 1__(1_%) _kd; _i
N 4 a0’ n ¢ o (29)
. 2 I
withN =—-(1-d, /1), and JZ[IUO_L"J,LZJ‘
Vo o Y

The structure of the nonlinear propagation of the QDIA
solitary waves in a dusty plasma model is described by
the KdV equation. We find that in relation (29), the
effect of dust charge variation and Fermi-Dirac statistics
are applied through currents in coefficients P and R of
KdV equation. Also, the quantum diffraction effects are
responsible for the term proportional to H*.

Using the transformation p =¢&—-u,7, where u, is the
constant speed normalized by c;, one can obtain the
analytical solution of KdV equation in (28).
Accordingly, the KdV equation can be written as

3
0y 20 ppd? (R0 g (30)
dp dp dp

where ¢=¢,.

Integrating equation (30) and inserting the boundary
d¢ d’¢

conditions, namely: ¢ — 0, s — 0, and >
P

—0 as

p — oo, the stationary solitary wave solution of the

KdV equation is obtained,

p=0 sech’2). (31)
w

3 . .
Where, w= /4—R and ¢, =% are width and maximum
u()

amplitude of the solitary wave, respectively.
Accordingly, the soliton amplitude depends on the
nonlinear coefficient (P) and the soliton width depends
on dispersive coefficient (R). Note that, in the solitary

waves as equation (31), the quantity 4R has to be
Uy

positive.

Dependence of the width of the solitary waves on u, and
d; are shown in Figs. 1 and 2, respectively.

3.8 q

3.4+ .

width

2.6

Fig.1 The dependence of soliton width on normalized chemical

potential of electrons with: P=1.35, d=0.85, u0=0.1

According to Fig. 1, the width of solitary wave
decreases as ; increases and from Fig. 2, it is observed
that, the width of the solitary wave increases as d;
increases.
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2.2

width

1.6 I I I I I I I I I

Fig.2 The dependence of soliton width on d; with: e=2, p.=1.27,
UO=O.1

The effect of p. on profile of QDIA solitary waves in
model plasma is shown in Fig. 3.

0.12

%/ﬁ\ — u=0.75
0.1 / — =23 1
YA N\ W
a W\
/1, W
1] W
0.08 - //f/ \ W\ B
[l W\
/1, V\
/1] W\
< 0.06} /1] VA B
[l \V\

/ !y \\ \\

s o\

/ [
0.04f oy N i

Y o\
\
/ ///// \ \ \
0.02} S \ 1
Y NN
/ N
e N
it R
o= . . . . . . i
-10 6 4 2 0 2 4 6 8 10

Fig. 3 stationary solitary wave for different values of . with: P=1.35,

d=0.85, ug=0.1
4 Compressive and rarefactive solitons

Solitary wave is established by balancing the effects of
dispersive and nonlinear effects. The characteristic of
such soliton structures depends on the relative values
between these two effects. Thus, the coefficients R and P
have a significant role in the solitary wave structure.
From the expressions in Eq. (29), it is found that the
coefficients R and P are affected by the dusty density (d;)
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and quantum diffraction (H). The coefficient P depends
on d; but is independent of H, whereas, the coefficient R
depends interestingly on d; and H. By calculating, one
can shows that the value of R vanishes at specific values
of H (H,), where

2 _ (o
-l g
d
1
_ _ I 2
:HC=2K1—(1 “g)]—’(—dl(go—%’ﬂ .

For these critical values of H, the KdV soliton
disappears. The plot of the variation of H. with d; is
shown in Fig. 4. It is observed that H. decreases as d;
increases. In acceptable situation such as R>0 (below)
with up>0 only compressive solitary wave structure is
formed and it is clear that no solitonic structure is
possible for R < 0 (above) with velocity uy>0. The other
acceptable situation is for R<0 and up<0, where the
rarefactive soliton is formed.

1.34
1.32 1
R<0
1.3f 1
£ 1281 1
>

1.26 R>0 1

1.24| 1
1.22 : ; :

o 01 02 03 04 05 06 07 08 09 1

Fig. 4 Critical values of H versus d; with e=2, u.=1.27, uy=0.1

Figures 5 and 7 respectively show the structures of
compressive (H<H. ) and rarefactive (H>H. ) solitary
wave in a plasma model with di=0.85 and different
values of H.
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H

Fig. 6 (b) Dependence of QDIA compressive soliton width on H with
di=0.85 «uy=0.1.

Fig. 5 QDIA compressive solitons for different values of H and with
di=0.85 «uy=0.1.

The effect of quantum diffraction (H) on amplitude and

0—— —_——
width of the compressive solitary wave is shown in //
Figs. 6 (a) and 6 (b), respectively. It is found that the 002k |
amplitude of compressive soliton and its width increase
with the increase of H. 0.041 1
= -0.06 q
0.15
0.141 -0.08 - i
0131 1 0.1 ——— H=1.37]|
- - —-H=1.40
0.121- — H=1.45
-0.12 Il I Il I Il 1 T
eE -8 -6 -4 2 0 2 4 6 8
0.1 | P
0.1 Fig. 7 QDIA rarefactive solitons for different values of H and with
di=0.85 <uy=-0.1.
0.09+
Also, in Figs. 8 (a) and 8 (b), it is shown that the
“R1 a2 14 16 e 12 122 124 12 128 13 amplitude and width of rarefactive soliton increase as H

H .
mcreases.

Fig. 6 (a) Dependence of QDIA compressive soliton amplitude on H
with di=0.85 «up=0.1.
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0.11

0.105+

0.1+

Om

0.095-

0.09r-

0085 Il Il Il Il Il Il Il Il
1.36 137 138 1.39 1.4 1.4 1.42  1.43 1.44 1.45

H

Fig. 8 (a) Dependence of QDIA rarefactive soliton amplitude on H
with di=0.85 «up=-0.1.

1.8+

1.4

1.2

I I I I I I I
1.36 137 138 1.39 1.4 1.4 1.42  1.43 1.44 1.45
H

Fig. 8 (b) Dependence of QDIA rarefactive soliton width on H with
d;=0.85 «uy=-0.1.

This study has been done with considering dust charge
variation. But, if the dust charge is considered fixed, the
structure of compressive and rarefactive solitary waves
is obtained from KdV equation as follows [32]:

p=0 sech*). (33)
w

Where, ¢, 3 and w= 4R and the nonlinear and
MO

dispersive coefficients are defined as

45

3
3 v

P=E+7(1—di)[%+(1_0’d)/0'2} (34)
_Vg I"I2 _(l_ad)

k=5 {1 4 {1 o,0” ﬂ &

v, =% ! (36)

J(l—d»[ad —(l'“")}
o

For critical values of H (H,), the dispersive coefficient
(R) vanishes. One can show that this critical values of H
is obtained as follows,

3 2 _
2 4 o,0

2
:{1—1{1——(1_“;)}}0
4 o0
:HC:Z[—OZZO-Z ] .
' o,(c”+1)-1

Figures 9 and 11 respectively show the structures of
compressive (H<H. ) and rarefactive (H>H, ) solitary
wave without considering the dust charge variation in a

(37)

[N

same plasma model with d;=0.85 and different values of
H.

0.12
H=1
— - —-H=1.1
0.1 YN — H=1.2|4
/N
/ \\
0.08} /N ]
/“ / \ “\
/ ANEY
/o \
F o~ v\
& 0.06 [0 /N v\ 1
ry / \ v\
/ / o
/ // / \\ v\
L /o Vv i
0.04 I \ N\
. \
/ // / \ \\ \
/ \
0.02f oy \ \ ,
/ // / \ \\
, / \\\
o= \ P
-3 2 Rl 0 1 2 3

Fig. 9 QDIA compressive solitons without dust charge variation for
different values of H and with d;=0.85 «u;=0.1.

The dependence of amplitude and width of the
compressive and rarefactive solitary waves on H are
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shown in Figs. 10 and 12, respectively. It is found that in

the both compressive and rarefactive structures, its width | ~ VRN e e - —
and amplitude increases with the increase of H. 002} N A 1
\ N [ /
\ / N
\ / /
0.105 0.04} \ \\\ S/ i
\ !
0.1F N \\ \\ //
o -0.06- \ / :
0.095 1 N v/
\ \ / /
0.09} 1 -0.08f N ]
\ /
\ //
0.085 1 N P
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5 Conclusions

In this paper, we have investigated the propagation of
nonlinear QDIA compressive and rarefactive solitary
waves in quantum dusty plasma containing inertia-less
quantum electrons and positrons, classical ions and
stationary dust by using fluid theory. The dust charge
variation effects and quantum mechanical effects are
taken into account. Considering the dust charge variation
gives rise to calculating of charging current of the
plasma particles. The quantum current of electrons and
positrons and the classical current of ions are obtained
by using Fermi-distribution functions and Boltzman-
Maxwell distribution, respectively. The
perturbation method is applied to derive the KdV

reductive

equation to study small amplitude solitary waves. With
attention to the kind of stretched space-time coordinates
that has been used in this method, dust charge variation
effects appear in the coefficients of the nonlinear (P) and
dispersive (R) terms, where these effects don’t lead to
dissipation. The coefficients P and R are modified
through the currents associated with the species of
particles in model plasma. Also we have found in
analytical and numerical stationary solitary wave
solution that these waves depend on the chemical
potential as well as the quantum diffraction parameter
(H).

47

We are hopeful that the current findings can be
applicable to highly degenerate dense space dusty
plasma such as white dwarfs.
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