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Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum 

dust-ion acoustic (QDIA) solitary waves in a collisionless, unmagnetized four component 

quantum plasma consisting of electrons, positrons, ions and stationary negatively charged 

dust grains with dust charge variation is investigated using reductive perturbation method. 

The charging current to the dust grains carried by the plasma particle, has been calculated 

with the orbit-limited motion approach. The quantum current of electrons and positrons is 

obtained by using Fermi-distribution functions. The basic features of QDIA solitary waves 

are studied by deriving the Korteweg-de Vries (KdV) Equation. It is found that both 

rarefactive and compressive type of solitons can exist in the model plasma. Further, the 

nonlinear and dispersive coefficients in KdV equation are modified by consideration dust 

charge variation effect and Fermi-Dirac distribution function. The present investigations 

should be useful for researches on astrophysical plasmas as well as for ultra small micro- 

and nano- electronic devices. 

PACS: 52.27.Lw; 52.35.Mw; 52.35.Sb; 67.10.Fj. 

 

 اطلاعات مقاله چكيده
  

 اي مؤلفه چهار مغناطيده غير كوانتومي پلاسماي يك در كوانتومي صوت - يون غبار سوليتاري خطي غير امواج انتشار

 با و هيدروديناميك كوانتوم ي نظريه اساس بر منفي، و متغير بار با پايا غبار ذرات و ها يون ها، پوزيترون ها، الكترون شامل

 از پلاسما، ذرات توسط غبار ذرات شدن دار بار جريان. است شده بررسي و تحقيق كاهشي اختلال روش از استفاده

 فرمي عتوزي تابع از ها پوزيترون و ها الكترون كوانتومي جريان ي محاسبه در و شده حاصل قيدمي مدار حركت رهيافت

 ي معادله توسط كوانتومي صوت -يون غبار سوليتاري امواج اصلي ي مشخصه مطالعه اين در. است شده استفاده ديراك

 شده داده نشان پلاسما مدل اين در ها ساليتون متراكم و رقيق ساختار نوع دو هر وجود و شده بررسي دوريس وگ كورت

 اثر گرفتن نظر در با دوريس وگ كورت معادله در پراش و خطي غير ضرايب كه دهد مي نشان نتايج براين، علاوه. است

 كوانتومي پلاسماهاي رفتار بهتر درك در تواند مي حاضر ي مطالعه. شوند مي اصلاح فرمي، توزيع تابع وذرات غبار  بار تغيير
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1 Introduction 
 

 In recent years, a huge number of works have been 

devoted to the investigation of the collective behavior of 

quantum plasmas [1]. It has been known that extremely 

dense and ultracold plasmas behave like an ideal gas, 

due to the exclusion principle. However, also dilute 

charged particle systems can exhibit quantum features, 

provided that the dimensions of the system are small 

enough. Small enough here means dimensions 

comparable to the de-Broglie wavelength,                  

�� = ℎ/	2��
��, where h is the Planck’s constant, T is 

the thermodynamic temperature, m is the mass of charge 

particle, and kB is the Boltzmann’s constant. For 

classical regimes, the de Broglie wavelength is so small 

that particles can be considered as point like; therefore 

there is no overlapping of the wave functions and no 

quantum interference. Therefore, one can expect to the 

quantum mechanical effects start playing a significant 

role when de-Broglie wavelength is similar to or larger 

than the average interparticle distance, 	���/� , i.e., when 

	���� ≥ 1, [2].  

 The three well known mathematical formulations to 

investigate new aspects of dense quantum plasmas by 

describe the dynamics of quantum plasmas are the 

Schrodinger-Poisson model, the Wigner-Poisson model 

and the quantum hydrodynamic (QHD) model. The 

quantum hydrodynamic model (QHD) as well as the 

Wigner-Poisson system can be used for investigating the 

new aspects of dense quantum plasma [3-6]. But it is 

more efficient to use the QHD model, because of its ease 

use of the boundary conditions and macroscopic 

variables. Mathematically, the (QHD) model generalizes 

the fluid model with the inclusion of quantum statistical 

pressure and quantum diffraction (also known as Bohm 

potential) term. These models have been discussed in 

detail in Refs. [7,8].  

 The vital role of quantum effects has been recognized in 

different environments such as: microelectronic devices 

[9], intense laser-solid density plasma experiments [10], 

dense astrophysical environments [11], high-gain free 

electron laser [12,13], thin metal films [14], quantum 

dots, nanowires [15], carbon nanotubes [16], quantum 

diodes [17], ultracold plasmas [18] and microplasmas 

[19]. 

 The most of laboratory and astrophysical quantum 

plasmas consist of electrons, positrons, and ions (e-p-i). 

Thus, many researchers investigated the role of quantum 

corrections on linear and nonlinear electrostatic waves in 

dense e-p-i plasmas. For instance, Ali et al [20] 

investigated the linear and nonlinear properties of the ion 

acoustic wave in an unmagnetized electron-positron-ion 

quantum plasma and found that the nonlinear waves in 

this plasma model behaved so differently than that of 

ordinary e-i plasma. Han et al. [21] studied the nonlinear 

propagation of ion-acoustic solitary and shock waves in 

a dissipative, nonplanar quantum plasma comprised of 

electrons, positrons, and ions. They showed that, both 

type of rarefactive and compressive of the nonlinear 

waves can propagate in this plasma system. 

 In contrast to the ordinary plasmas, the most of the 

laboratory and astrophysical plasmas usually contain 

charged (negative or positive) impurities or dust 

particles in addition to the usual components such as 

electrons, positrons and ions; for instance, in different 

environments of low temperature laboratory, 

microelectronic devices and metallic nanostructures, 

tokamak edges, plasma coating, cometary tails, 

interplanetary spaces and in the planetary ring systems. 

 The presence of this charged dust particles changes the 

equilibrium condition and introduces different types of 

new wave modes such as dust-ion acoustic (DIA) waves. 

Therefore, it is important to study linear and nonlinear 

waves in various configuration of laboratory and spaces 

dusty plasma. It is well known that Shukla and Silin [22] 

were the first ones to investigate DIA waves 

theoretically in an unmagnetized collisionless dusty 

plasma and then DIA waves have been observed in 

laboratory [23,24]. Recently, many researchers have 

discussed several aspects of linear and nonlinear wave 

propagation in dusty plasmas [25-31]. Dust ion acoustic 

solitary wave, a kind of nonlinear waves associated with 

the DIA waves, have also received a great deal of 

attention in study the basic properties of localized 

electrostatic perturbations in space and laboratory dusty 

plasmas. Several authors have investigated theoretically 
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in this subject. Rouhani et al. [32] investigated the 

nonlinear propagation of compressive and rarefactive 

QDIA solitary waves in four components quantum 

plasma. They studied the effect of quantum diffraction 

parameter (H) and dust density (nd) on the structure of 

QDIA solitary waves. Emadi and Zahed 2016 [33] 

studied the behavior of linear and nonlinear dust ion 

acoustic (DIA) solitary waves in an unmagnetized 

quantum dusty plasma, including inertialess electrons 

and positrons, ions, and mobile negative dust grains. 

They employed Reductive perturbation and Sagdeev 

pseudopotential methods for small and large amplitude 

DIA solitary waves, respectively. They observed that the 

variation on the values of the plasma parameters such as 

different values of Mach number M, ion to electron 

Fermi temperature ratio σ, and quantum diffraction 

parameter H can lead to the creation of compressive 

solitary waves.  

 As usual, the dust charge is a function of the plasma 

parameters, but as a consequence of that, the typical dust 

charging time scale may be longer than the DIA time 

scale, and we anticipate that the dust charge fluctuations 

have no essential effect on the DIA mode, and the dust 

charge can therefore be assumed to be constant. All of 

the works that mentioned in above satisfy this situation 

and in other words, dust charge assumed to be constant. 

However, in a realistic situation in space and laboratory 

devices the charge on a dust grain is not constant but 

varies with space and time [34]. Ghosh et al. [35-37] 

have studied nonlinear propagation of the DIA waves, 

particularly solitary [35] in a dusty plasma by taking into 

account the dust charge variation. Alinejad 2010  [38] 

investigated the one dimensional dynamics of nonlinear 

electrostatic dust ion-coustic (DIA) waves in an 

unmagnetized dusty plasma consisting of ion fluid, non-

thermal electrons and fluctuating immobile dust particles 

has been made by the reductive perturbation technique. 

He found that the dust charge fluctuation is a source of 

dissipation, and is responsible for the formation of the 

dust ion-acoustic shock waves. To the best of our 

knowledge, no investigation for nonlinear DIA solitary 

waves in four component quantum plasma with 

consideration of dust charge variation has been made. 

 On the other hand, the nonlinear wave propagation of 

any plasma system depends on the velocity distribution 

of the corresponding plasma species. The Maxwellian 

velocity distribution is considered as the usual 

distribution in a collisionless plasma [39-44]. But it is 

often noticed that the velocity distribution of plasma 

particles in space and laboratory are not exactly 

Maxwellian and may be deviated from that [45,46]. In 

quantum plasmas, the Fermi-Dirac statistical distribution 

is usually employed rather than the widely used 

Boltzman-Maxwell distribution in classical plasmas. 

Therefore, one would expect a great deal of interest 

effects to follow from the inclusion of the grain charge 

evolution and Fermi-distribution function for quantum 

particles. Following our trend on applications of the 

quantum plasma, in this paper, using the QHD model, 

we investigate the DIA solitary waves in an un-

magnetized collision-less four component quantum 

plasma consisting of inertia-less quantum electrons and 

positrons with Fermi-distribution function, classical cold 

ions and stationary negative-dust-charge variation. The 

rate of dust grain charge variation is determined by the 

current associated with the electrons, positrons and ions 

in the plasma. 

 Our manuscript is organized as follows: The basic set of 

equations for QDIA waves are presented in Sec 2. In Sec 

3, KdV equation is derived and the reductive 

perturbation method is used in its stationary solution. 

The structures of compressive and rarefactive solitary 

waves are investigated in Sec 4 and the Result and brief 

discussion is finally presented in Sec 5.  

2 Basic equations 
 

 Following the quantum hydrodynamic model, we 

consider the homogeneous, collision-less, un magnetized 

and dissipative dust-electron-positron-ion quantum 

plasma consisting of inertia-less electrons and positrons. 

The stationary negative-dust-charge is not constant and 

varies with time. Since the electrons and positrons are 

fermions, their equation of state is described from the 

Fermi-gas model at approximately zero temperature as 

�� = 2
�������/3���� ,	 where ��� = ℏ��3�����
�/�
/�2��
�� is 

the Fermi temperature, kB is the Boltzmann constant, 

and ��� is the equilibrium number density of the jth 
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species (j=e, p). The quasi-neutrality condition in the 

equilibrium state can be written as �� + !� = 1 + "�,	 where 

�# = �$�/�#�	,		"% = �"0/�%0,	 and !# = �'�('�/��#�. By using 

the QHD model, the set of normalized basic equation for 

DIA in the quantum plasma model are given as follow: 

( ) 0
t i x i i
n nu∂ +∂ = ,                                                        (1)                                                                                         

t i i x i x
u u u ϕ∂ + ∂ = −∂ ,                                                   (2)          

22

0
2

x e

x e x e x

e

nH
n n

n
ϕ κ

 ∂
∂ − ∂ + ∂ = 

  
,
                           (3)

22

0
2

x p

x p x p x

p

nH
n n

n
ϕ σ κ

 ∂
 −∂ − ∂ + ∂ =
  

,                (4)

2

0

(1 ) (1 )(1 ) d

x i d e i d p i i

d

Q
d n d n n d

Q
ϕ α α∂ = − + − − − +  ,         (5) 

where	)' = �#/(1 − !) = 1 + ("#/(1 − !)),	- = ��./��$ , 
�$ = �. = �, / = �#�/�$�, The non-dimensional 

quantum diffraction parameter H is defined                   

as 0 = ℏ1.$/
���$ ,	that	1.$ = (4��$���/�$)�/�. The 

number density, nj (j=e, i, p, d), of the jth species are 

normalized by their equilibrium density nj0, the fluid ion 

velocity u by the quantum ion-acoustic speed              

3# = (
���$/�#)�/�, the electrostatic wave potential 4 is 

normalized by 
���$/�, the space and time coordinates x 

and t are normalized, respectively, by the quantum 

Debye length �5 = (
���$/4����#�)�/�,	and the ion 

plasma period 1.#�� = (4����#�/�#)��/�. 

 Since the dust grains are charged by the currents of the 

other particles in plasma model, the charge of dust grain 

(Qd) is not constant. The charge of dust grains depends 

on the number density and thermal speed of charged 

particles. The dust grains can acquire the negative charge 

when the number density of the electrons is larger than 

that of the positrons [47]. By considering a simple 

situation in which the charging current is due to the 

collections of electrons and ions hitting the grain 

surface, the variable dust charge Qd is obtained by  

/d j

j

dQ dt I=∑
 

,

            

(6) 

 Where j represents the plasma species (i.e., j=e, p and i) 

and Ij is the current associated with the species j. 

According to the well-known orbit limited motion 

approach [34],

 
3( , , ) ( , ) ( , , )j d j j d jI r t q q v q v f r v t d pσ= ∫

r r
,                         (7)                    

 Where fj and qj are, respectively, the velocity 

distribution and charge of the plasma species j and σj is 

the cross section for charging collisions between the dust 

and the plasma particle species j. Distribution function 

for classical particles (i.e., ions) is Maxwell-Boltzmann 

distribution and for quantum particles (i.e., electrons and 

positrons) is Fermi-Dirac distribution as defined as: 

( )

( )

1
( ) ,

1
( ) ,

1

j

j

j

j

f j i
e

f j e p
e

β ε µ

β ε µ

ε

ε

−

−

∝ =

∝ =
+

,

           

(8) 

Therefore, one can obtain the following expressions for 

the plasma species currents for dust grains                  

2
2 2( )

3
e d e Te e d

I er n V
π

µ ϕ
 

= − + + 
 

,                                  

 

(9)

 
2

2 2 2
3

p d p Tp p p d
I er n V

π
µ µ ϕ
 

= − + 
   

,

                          

(10) 

24 1 e

i d i Ti d

i

T
I r n eV

T
π ϕ

  
= −   

  
,                               (11)  

where rd is the radius of the dust grain, e pT T T= = is the 

thermal temperature of electrons and positrons.
e pandµ µ

are, respectively, chemical potential of electrons and 

positrons that are normalized by B
k T  and d

d

d

Q

r
ϕ = is the 

electrostatic potential of dust particles and is normalized 

by /
B

k T e .

 
 Note that, to obtain Ie and Ip in relations (9) and (10), we 

have assumed that the chemical potential of electrons 

and positrons are large and the integral in relation (7) has 

been solved in this limit.   

 Summation of equilibrium currents; say, 

0 0( )j j d dI I Q Q= = , are zero 



Pishbin et al./ Journal of Interfaces and Thin Films 

 

41 

 

0 0 0 0e p iI I I+ + = ,                                            (12) 

by letting Qd=Qd0+qd, and Ij=Ij0+Ij1 and substituting (9-

12) into (6), one can obtain 

1 1 1

d

e p i

dq
I I I

dt
= + + ,                                                   (13)                             

where, Ij1 are the perturbed currents that normalized by 

Ii0 as follows: 

[ ]

1 0

2

1 0

1 0

1

( )

1

j j j

e e e e d d

p p p p d

i i i d

j j

I I I

I I n n Aq Bq

I I n n Cq

I n n Dq

with n n

δ

δ

δ

δ

= −

 = + + 

 = − 

= −

= −
                                   (14)                                                                                      

The coefficients A, B, C and D are the functions of 

plasma parameters as follow: 

2

0

2
2( )

3

d

e d

A
ϕ

π
µ ϕ

=

+ +

,                                               (15) 

( )2

0 0

2

0

2

( )
3

d e d

e d

B
ϕ µ ϕ

π
µ ϕ

+
=

+ +

,                                                (16) 

0

2
2

0

2

2
3

p d

p p d

C
µ ϕ

π
µ µ ϕ

=

− +

,                          (17)

0

0
1

d

e

d

i

D
T

T

ϕ

ϕ
=

−

.                                       (18) 

3 Derivation of the KdV equation 

 Now, using the reductive perturbation methods [49] and 

additional rescaling [48] ( )1/2

0x v tξ ε= − ,   3/2tτ ε= , 

where ε is a small parameter proportional to the 

amplitude of the perturbation and v0 is the phase velocity 

normalized to the fixed acoustic speed ci, we can study 

the dynamics of the propagation of small but finite 

amplitude quantum dust- ion acoustic solitary waves in 

plasma model. Therefore, we expand the perturbed 

variables around the equilibrium value as 

2

1 2

2

1 2

2

1 2

2

1 2

1 ...,

0 ...,

0 ...,

....,

j j j

i i i

d d d

n n n

u u u

q q q

ε ε

ε ε

ϕ εϕ ε ϕ

ε ε

= + + +

= + + +

= + + +

= + +

                                             (19)               

with these new independent coordinates, and by 

substituting the expansions (19) into the one dimensional 

Eqs. (1)-(5) and (13), one can find a set of equations in 

the form of the lowest-order power series on ε , 

( )

1

1

0

1 1

1

1

1 1

0 1 0 1 1

1

,

1
(1 ) ,

,

.

i

d

i i d

p

e

e e p p i

d

u
v

n d

n

n

I n I n n
q

ϕ

α
α ϕ

σ

ϕ

σ
ϕ

η

=

− 
= − − 

 

−
=

=

+ +
=

                 (20) 

where 

( )
( )

0 0

1/ 2

0

0 0

,

1 /
.

/1
1 ( )

e p

i

e pd

i d i

BI CI D

d
v

I I
d d

η

η

σα
α

σ η

= − + +

 
 

− = ±
 − − 

− − +  
   

         (21)      

The positive or negative sign of v0 corresponds to the 

right or left propagation of the QDIA wave, respectively. 

 To next higher order in ε, one can obtain the following 

set of equations: 

( )0 2 2 1 1 1i i i i i
v n u n n uξ ξ τ ξ− ∂ + ∂ = −∂ − ∂ ,                        (22)   

2 0 2 1 1 1i i i iv u u u uξ ξ ξ τϕ∂ − ∂ = − ∂ −∂                          (23) 

2
3

2 2 1 1 1
4

e e e e

H
n n n nξ ξ ξ ξϕ κ−∂ + ∂ = − ∂ + ∂                          (24)        

2
3

2 2 1 1 1
4

p p p p

H
n n n nξ ξ ξ ξϕ σ σ κ∂ + ∂ = − ∂ + ∂

                   
 (25)

  
 

2

1 2 2 2 2(1 ) (1 )(1 )
i d e i d p i i d

d n d n n d qξϕ α α∂ = − + − − − +
           

(26)
               

[ ]

2

0 2 1 1 1 2

0 2 1 1 2 2 1 1 2 0

e e d e d d

p p p d d i i d d

I n Aq Bn q Bq

I n Cn q Cq n Dn q Dq

 + + + + 

 − − + − − =              

(27) 
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 Eliminating the second order perturbed quantities by 

using the first order relations; finally one can derive the 

KdV equation as  

3

1 1 1 1 0P Rτ ξ ξϕ ϕ ϕ ϕ∂ + ∂ + ∂ = ,                                       (28)                                             

where the coefficients of the nonlinear (P) and dispersive 

(R) terms are as follows: 

( )

4 2

0

0 0

0 2 2 4

0 0

2

0 0 0 2

2 2 2 3

0

2
0

02 2

(1 )3
(1 )( )

1 3
( 2 )

2 2
( )

(1 )1
1 1

4

d

i d

p pi

e

p e pi i

pd i

e

d

d
v

I Id
P I C

N v v

I I Id dD
B C A

v

IdH
R I

N

α
α

σ

η σ σ

δ δ δ
ση σ η

α κ

ηα σ σ

 −
+ − + + 

 
 
 = + − − +
 
 
 

− + − + + − 
 

     −
= − − − −     

      
 (29)    

 

with
3

0

2
(1 / )iN d

v
η= − , and 0

0 2

0

1p

e

I
I

v
δ

σ

 
= − + 
 

.  

 The structure of the nonlinear propagation of the QDIA 

solitary waves in a dusty plasma model is described by 

the KdV equation. We find that in relation (29), the 

effect of dust charge variation and Fermi-Dirac statistics 

are applied through currents in coefficients P and R of 

KdV equation. Also, the quantum diffraction effects are 

responsible for the term proportional to H
2
. 

 Using the transformation 0uρ ξ τ= − , where u0 is the 

constant speed normalized by ci, one can obtain the 

analytical solution of KdV equation in (28). 

Accordingly, the KdV equation can be written as 

3

0 3
0

d d d
u P R

d d d

φ φ φ
φ

ρ ρ ρ
− + + = ,                (30) 

where 1φ ϕ= .  

 Integrating equation (30) and inserting the boundary 

conditions, namely: 0, 0,
d

d

φ
φ

ρ
→ →  and 

2

2
0

d

d

φ

ρ
→  as 

ρ → ±∞ , the stationary solitary wave solution of the 

KdV equation is obtained, 

2sec ( )
m

h
w

ρ
φ φ= .                                      (31) 

 Where, 
0

4R
w

u
=  and 03

m

u

P
φ =  are width and maximum 

amplitude of the solitary wave, respectively. 

Accordingly, the soliton amplitude depends on the 

nonlinear coefficient (P) and the soliton width depends 

on dispersive coefficient (R). Note that, in the solitary 

waves as equation (31), the quantity 
0

4R

u
 has to be 

positive.  

 Dependence of the width of the solitary waves on µe and 

di are shown in Figs. 1 and 2, respectively.  

 

Fig.1 The dependence of soliton width on normalized chemical 

potential of electrons with: P=1.35, d=0.85, u0=0.1 

 According to Fig. 1, the width of solitary wave 

decreases as µ i increases and from Fig. 2, it is observed 

that, the width of the solitary wave increases as di 

increases.  
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Fig.2 The dependence of soliton width on di with: e=2, µe=1.27, 

u0=0.1 

The effect of µe on profile of QDIA solitary waves in 

model plasma is shown in Fig. 3. 

 

Fig. 3 stationary solitary wave for different values of µe with: P=1.35, 

d=0.85, u0=0.1 

4 Compressive and rarefactive solitons 
 

 Solitary wave is established by balancing the effects of 

dispersive and nonlinear effects. The characteristic of 

such soliton structures depends on the relative values 

between these two effects. Thus, the coefficients R and P 

have a significant role in the solitary wave structure. 

From the expressions in Eq.  (29), it is found that the 

coefficients R and P are affected by the dusty density (di) 

and quantum diffraction (H). The coefficient P depends 

on di but is independent of H, whereas, the coefficient R 

depends interestingly on di and H. By calculating, one 

can shows that the value of R vanishes at specific values 

of H (Hc), where 
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 For these critical values of H, the KdV soliton 

disappears. The plot of the variation of Hc with di is 

shown in Fig. 4. It is observed that Hc decreases as di 

increases. In acceptable situation such as R>0 (below) 

with u0>0 only compressive solitary wave structure is 

formed and it is clear that no solitonic structure is 

possible for R < 0 (above) with velocity u0>0. The other 

acceptable situation is for R<0 and u0<0, where the 

rarefactive soliton is formed. 

 

Fig. 4 Critical values of H versus di with e=2, µe=1.27, u0=0.1 

 

 Figures 5 and 7 respectively show the structures of 

compressive (H<Hc ) and rarefactive (H>Hc ) solitary 

wave in a plasma model with di=0.85 and different 

values of H.  
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Fig. 5 QDIA compressive solitons for different values of H and with 

di=0.85 ،u0=0.1. 

 The effect of quantum diffraction (H) on amplitude and 

width of the compressive solitary wave is shown in  

Figs. 6 (a) and 6 (b), respectively. It is found that the 

amplitude of compressive soliton and its width increase 

with the increase of H.  

 

Fig. 6 (a) Dependence of QDIA compressive soliton amplitude on H 

with di=0.85 ،u0=0.1. 

 

Fig. 6 (b) Dependence of QDIA compressive soliton width on H with 

di=0.85 ،u0=0.1. 

 

Fig. 7 QDIA rarefactive solitons for different values of H and with 

di=0.85 ،u0=-0.1. 

Also, in Figs. 8 (a) and 8 (b), it is shown that the 

amplitude and width of rarefactive soliton increase as H 

increases. 
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Fig. 8 (a) Dependence of QDIA rarefactive soliton amplitude on H 

with di=0.85 ،u0=-0.1. 

 

Fig. 8 (b) Dependence of QDIA rarefactive soliton width on H with 

di=0.85 ،u0=-0.1. 

 This study has been done with considering dust charge 

variation. But, if the dust charge is considered fixed, the 

structure of compressive and rarefactive solitary waves 

is obtained from KdV equation as follows [32]: 
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 For critical values of H (Hc), the dispersive coefficient 

(R) vanishes. One can show that this critical values of H 

is obtained as follows, 
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 Figures 9 and 11 respectively show the structures of 

compressive (H<Hc ) and rarefactive (H>Hc ) solitary 

wave without considering the dust charge variation in a 

same plasma model with di=0.85 and different values of 

H.  

 

Fig. 9 QDIA compressive solitons without dust charge variation for 

different values of H and with di=0.85 ،u0=0.1. 
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shown in Figs. 10 and 12, respectively. It is found that in 

the both compressive and rarefactive structures, its width 

and amplitude increases with the increase of H. 

 

Fig. 10 (a) Dependence of QDIA compressive soliton amplitude on 

H without dust charge variation and with di=0.85 ،u0=0.1. 

 

 

Fig. 10 (b) Dependence of QDIA compressive soliton width on   H 

without dust charge variation and with di=0.85 ،u0=0.1. 

 

 

Fig. 11 QDIA rarefactive solitons without dust charge variation for 

different values of H and with di=0.85 ،u0=-0.1. 

 

 

Fig. 12 (a) Dependence of QDIA rarefactive soliton amplitude on H 

without dust charge variation and with di=0.85 ،u0=-0.1. 
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Fig. 12 (b) Dependence of QDIA rarefactive soliton width on H 

without dust charge variation and with di=0.85 ،u0=-0.1. 

5 Conclusions 
 

 In this paper, we have investigated the propagation of 

nonlinear QDIA compressive and rarefactive solitary 

waves in quantum dusty plasma containing inertia-less 

quantum electrons and positrons, classical ions and 

stationary dust by using fluid theory. The dust charge 

variation effects and quantum mechanical effects are 

taken into account. Considering the dust charge variation 

gives rise to calculating of charging current of the 

plasma particles. The quantum current of electrons and 

positrons and the classical current of ions are obtained 

by using Fermi-distribution functions and Boltzman-

Maxwell distribution, respectively. The reductive 

perturbation method is applied to derive the KdV 

equation to study small amplitude solitary waves. With 

attention to the kind of stretched space-time coordinates 

that has been used in this method, dust charge variation 

effects appear in the coefficients of the nonlinear (P) and 

dispersive (R) terms, where these effects don’t lead to 

dissipation. The coefficients P and R are modified 

through the currents associated with the species of 

particles in model plasma. Also we have found in 

analytical and numerical stationary solitary wave 

solution that these waves depend on the chemical 

potential as well as the quantum diffraction parameter 

(H). 

 We are hopeful that the current findings can be 

applicable to highly degenerate dense space dusty 

plasma such as white dwarfs. 
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